000889144 001__ 889144
000889144 005__ 20230111074309.0
000889144 0247_ $$2doi$$a10.1001/jamaneurol.2020.2526
000889144 0247_ $$2ISSN$$a0003-9942
000889144 0247_ $$2ISSN$$a0375-8540
000889144 0247_ $$2ISSN$$a1538-3687
000889144 0247_ $$2ISSN$$a2168-6149
000889144 0247_ $$2ISSN$$a2168-6157
000889144 0247_ $$2ISSN$$a2330-9644
000889144 0247_ $$2Handle$$a2128/27994
000889144 0247_ $$2altmetric$$aaltmetric:85353252
000889144 0247_ $$2pmid$$a33165511
000889144 0247_ $$2WOS$$aWOS:000593760500013
000889144 037__ $$aFZJ-2021-00069
000889144 041__ $$aEnglish
000889144 082__ $$a610
000889144 1001_ $$0P:(DE-HGF)0$$aBrendel, Matthias$$b0$$eCorresponding author
000889144 245__ $$aAssessment of 18 F-PI-2620 as a Biomarker in Progressive Supranuclear Palsy
000889144 260__ $$aChicago, Ill.$$bAmerican Medical Association$$c2020
000889144 3367_ $$2DRIVER$$aarticle
000889144 3367_ $$2DataCite$$aOutput Types/Journal article
000889144 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1625212922_4883
000889144 3367_ $$2BibTeX$$aARTICLE
000889144 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889144 3367_ $$00$$2EndNote$$aJournal Article
000889144 520__ $$aImportance: Progressive supranuclear palsy (PSP) is a 4-repeat tauopathy. Region-specific tau aggregates establish the neuropathologic diagnosis of definite PSP post mortem. Future interventional trials against tau in PSP would strongly benefit from biomarkers that support diagnosis.Objective: To investigate the potential of the novel tau radiotracer 18F-PI-2620 as a biomarker in patients with clinically diagnosed PSP.Design, setting, and participants: In this cross-sectional study, participants underwent dynamic 18F-PI-2620 positron emission tomography (PET) from 0 to 60 minutes after injection at 5 different centers (3 in Germany, 1 in the US, and 1 in Australia). Patients with PSP (including those with Richardson syndrome [RS]) according to Movement Disorder Society PSP criteria were examined together with healthy controls and controls with disease. Four additionally referred individuals with PSP-RS and 2 with PSP-non-RS were excluded from final data analysis owing to incomplete dynamic PET scans. Data were collected from December 2016 to October 2019 and were analyzed from December 2018 to December 2019.Main outcomes and measures: Postmortem autoradiography was performed in independent PSP-RS and healthy control samples. By in vivo PET imaging, 18F-PI-2620 distribution volume ratios were obtained in globus pallidus internus and externus, putamen, subthalamic nucleus, substantia nigra, dorsal midbrain, dentate nucleus, dorsolateral, and medial prefrontal cortex. PET data were compared between patients with PSP and control groups and were corrected for center, age, and sex.Results: Of 60 patients with PSP, 40 (66.7%) had RS (22 men [55.0%]; mean [SD] age, 71 [6] years; mean [SD] PSP rating scale score, 38 [15]; score range, 13-71) and 20 (33.3%) had PSP-non-RS (11 men [55.0%]; mean [SD] age, 71 [9] years; mean [SD] PSP rating scale score, 24 [11]; score range, 11-41). Ten healthy controls (2 men; mean [SD] age, 67 [7] years) and 20 controls with disease (of 10 [50.0%] with Parkinson disease and multiple system atrophy, 7 were men; mean [SD] age, 61 [8] years; of 10 [50.0%] with Alzheimer disease, 5 were men; mean [SD] age, 69 [10] years). Postmortem autoradiography showed blockable 18F-PI-2620 binding in patients with PSP and no binding in healthy controls. The in vivo findings from the first large-scale observational study in PSP with 18F-PI-2620 indicated significant elevation of tracer binding in PSP target regions with strongest differences in PSP vs control groups in the globus pallidus internus (mean [SD] distribution volume ratios: PSP-RS, 1.21 [0.10]; PSP-non-RS, 1.12 [0.11]; healthy controls, 1.00 [0.08]; Parkinson disease/multiple system atrophy, 1.03 [0.05]; Alzheimer disease, 1.08 [0.06]). Sensitivity and specificity for detection of PSP-RS vs any control group were 85% and 77%, respectively, when using classification by at least 1 positive target region.Conclusions and relevance: This multicenter evaluation indicates a value of 18F-PI-2620 to differentiate suspected patients with PSP, potentially facilitating more reliable diagnosis of PSP.
000889144 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000889144 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x1
000889144 588__ $$aDataset connected to CrossRef
000889144 7001_ $$0P:(DE-HGF)0$$aBarthel, Henryk$$b1
000889144 7001_ $$0P:(DE-Juel1)169110$$avan Eimeren, Thilo$$b2
000889144 7001_ $$0P:(DE-HGF)0$$aMarek, Ken$$b3
000889144 7001_ $$0P:(DE-HGF)0$$aBeyer, Leonie$$b4
000889144 7001_ $$0P:(DE-HGF)0$$aSong, Mengmeng$$b5
000889144 7001_ $$0P:(DE-HGF)0$$aPalleis, Carla$$b6
000889144 7001_ $$0P:(DE-HGF)0$$aGehmeyr, Mona$$b7
000889144 7001_ $$0P:(DE-HGF)0$$aFietzek, Urban$$b8
000889144 7001_ $$0P:(DE-HGF)0$$aRespondek, Gesine$$b9
000889144 7001_ $$0P:(DE-HGF)0$$aSauerbeck, Julia$$b10
000889144 7001_ $$0P:(DE-HGF)0$$aNitschmann, Alexander$$b11
000889144 7001_ $$0P:(DE-HGF)0$$aZach, Christian$$b12
000889144 7001_ $$0P:(DE-Juel1)184744$$aHammes, Jochen$$b13$$ufzj
000889144 7001_ $$0P:(DE-Juel1)131613$$aBarbe, Michael T.$$b14
000889144 7001_ $$0P:(DE-HGF)0$$aOnur, Oezguer$$b15
000889144 7001_ $$0P:(DE-HGF)0$$aJessen, Frank$$b16
000889144 7001_ $$0P:(DE-HGF)0$$aSaur, Dorothee$$b17
000889144 7001_ $$0P:(DE-HGF)0$$aSchroeter, Matthias L.$$b18
000889144 7001_ $$0P:(DE-HGF)0$$aRumpf, Jost-Julian$$b19
000889144 7001_ $$0P:(DE-HGF)0$$aRullmann, Michael$$b20
000889144 7001_ $$0P:(DE-HGF)0$$aSchildan, Andreas$$b21
000889144 7001_ $$0P:(DE-HGF)0$$aPatt, Marianne$$b22
000889144 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, Bernd$$b23$$ufzj
000889144 7001_ $$0P:(DE-HGF)0$$aBarret, Olivier$$b24
000889144 7001_ $$0P:(DE-HGF)0$$aMadonia, Jennifer$$b25
000889144 7001_ $$0P:(DE-HGF)0$$aRussell, David S.$$b26
000889144 7001_ $$0P:(DE-HGF)0$$aStephens, Andrew$$b27
000889144 7001_ $$0P:(DE-HGF)0$$aRoeber, Sigrun$$b28
000889144 7001_ $$0P:(DE-HGF)0$$aHerms, Jochen$$b29
000889144 7001_ $$0P:(DE-HGF)0$$aBötzel, Kai$$b30
000889144 7001_ $$0P:(DE-HGF)0$$aClassen, Joseph$$b31
000889144 7001_ $$0P:(DE-HGF)0$$aBartenstein, Peter$$b32
000889144 7001_ $$0P:(DE-HGF)0$$aVillemagne, Victor$$b33
000889144 7001_ $$0P:(DE-HGF)0$$aLevin, Johannes$$b34
000889144 7001_ $$0P:(DE-HGF)0$$aHöglinger, Günter U.$$b35
000889144 7001_ $$0P:(DE-Juel1)177611$$aDrzezga, Alexander$$b36$$ufzj
000889144 7001_ $$0P:(DE-HGF)0$$aSeibyl, John$$b37
000889144 7001_ $$0P:(DE-HGF)0$$aSabri, Osama$$b38
000889144 773__ $$0PERI:(DE-600)2701924-X$$a10.1001/jamaneurol.2020.2526$$gVol. 77, no. 11, p. 1408 -$$n11$$p1408 -$$tJAMA neurology$$v77$$x2168-6149$$y2020
000889144 8564_ $$uhttps://jamanetwork.com/journals/jamaneurology/fullarticle/2768084
000889144 8564_ $$uhttps://juser.fz-juelich.de/record/889144/files/Brendel2020_Assessment_of_18F.pdf$$yOpenAccess
000889144 909CO $$ooai:juser.fz-juelich.de:889144$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000889144 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184744$$aForschungszentrum Jülich$$b13$$kFZJ
000889144 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich$$b23$$kFZJ
000889144 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177611$$aForschungszentrum Jülich$$b36$$kFZJ
000889144 9130_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000889144 9130_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x1
000889144 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000889144 9141_ $$y2021
000889144 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-04
000889144 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-04
000889144 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-09-04
000889144 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-09-04
000889144 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJAMA NEUROL : 2018$$d2020-09-04
000889144 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJAMA NEUROL : 2018$$d2020-09-04
000889144 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-09-04
000889144 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-04
000889144 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-04
000889144 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889144 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-04
000889144 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2020-09-04
000889144 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-04
000889144 920__ $$lyes
000889144 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
000889144 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x1
000889144 980__ $$ajournal
000889144 980__ $$aVDB
000889144 980__ $$aUNRESTRICTED
000889144 980__ $$aI:(DE-Juel1)INM-2-20090406
000889144 980__ $$aI:(DE-Juel1)INM-5-20090406
000889144 9801_ $$aFullTexts