Eventify: Event-Based Task Parallelism for Strong Scaling

David Haensel
d.haensel@fz-juelich.de
Jilich Supercomputing Centre
Julich, Germany

Ivo Kabadshow
ikabadshow@fz-juelich.de
Jilich Supercomputing Centre
Julich, Germany

ABSTRACT

Today’s processors become fatter, not faster. However, the exploita-
tion of these massively parallel compute resources remains a chal-
lenge for many traditional HPC applications regarding scalability,
portability and programmability. To tackle this challenge, several
parallel programming approaches such as loop parallelism and
task parallelism are researched in form of languages, libraries and
frameworks. Task parallelism as provided by OpenMP, HPX, StarPU,
Charm++ and Kokkos is the most promising approach to overcome
the challenges of ever increasing parallelism. The aforementioned
parallel programming technologies enable scalability for a broad
range of algorithms with coarse-grained tasks, e. g. in linear algebra
and classical N-body simulation. However, they do not fully address
the performance bottlenecks of algorithms with fine-grained tasks
and the resultant large task graphs. Additionally, we experienced
the description of large task graphs to be cumbersome with the
common approach of providing in-, out- and inout-dependencies.
We introduce event-based task parallelism to solve the performance
and programmability issues for algorithms that exhibit fine-grained
task parallelism and contain repetitive task patterns. With user-
defined event lists, the approach provides a more convenient and
compact way to describe large task graphs. Furthermore, we show
how these event lists are processed by a task engine that reuses user-
defined, algorithmic data structures. As use case, we describe the
implementation of a fast multipole method for molecular dynam-
ics with event-based task parallelism. The performance analysis
reveals that the event-based implementation is 52 % faster than a
classical loop-parallel implementation with OpenMP.

CCS CONCEPTS

« Theory of computation — Shared memory algorithms.

KEYWORDS

task parallelism, shared memory, multi-core, strong scaling

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PASC °20, June 29-July 1, 2020, Geneva, Switzerland

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7993-9/20/06....$15.00
https://doi.org/10.1145/3394277.3401858

Laura Morgenstern
Imor@hrz.tu-chemnitz.de
Chemnitz University of Technology
Chemnitz, Germany

Andreas Beckmann
a.beckmann@fz-juelich.de
Jilich Supercomputing Centre
Julich, Germany

Holger Dachsel
h.dachsel@fz-juelich.de
Julich Supercomputing Centre
Julich, Germany

ACM Reference Format:

David Haensel, Laura Morgenstern, Andreas Beckmann, Ivo Kabadshow,
and Holger Dachsel. 2020. Eventify: Event-Based Task Parallelism for Strong
Scaling. In Proceedings of the Platform for Advanced Scientific Computing
Conference (PASC °20), June 29-July 1, 2020, Geneva, Switzerland. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3394277.3401858

1 INTRODUCTION
1.1 Challenge

Today’s processors gain their performance through increasing core
counts, instead of increasing clock rates. The utilization of these
massively parallel compute resources remains a challenge for many
traditional HPC applications. While aiming at the computation of
larger and more complex scientific problems, non-functional soft-
ware properties such as scalability, portability and programmability
were rarely taken into account. However, sustainable software that
runs efficiently on diverse, massively parallel architectures is vital
in the upcoming exascale era.

Our goal is to solve the performance portability challenge for
HPC-applications that target strong scaling. Our use case is FM-
Solvr, a state-of-the-art C++-implementation of the Fast Multipole
Method (FMM) for molecular dynamics (MD) that can be integrated
in MD-codes such as GROMACS [1] or Coulomb-solvers such as
ScaFaCoS [2]. FMSolvr is published as open source under LGPL v2.1
and available at www.fmsolvr.org. The FMM is a fast summation
technique that computes all pairwise long-range interactions, e. g.
coulombic or gravitational interactions, in particle-based simula-
tions. Since the computation of Coulomb interactions is the most ex-
pensive part of MD-simulations, its performance and scalability are
decisive for the whole simulation [3]. Biochemical MD-simulations
performed by GROMACS usually encompass only a few hundred
thousand particles. Current supercomputers such as Summit and
Sierra provide an equivalent amount of compute cores. Hence, the
computational effort per compute core is very low. In contrast
to typical HPC-applications, FMSolvr is not compute-bound, but
synchronization-critical. Therefore, a parallelization approach must
exhibit extremely low runtime overheads, otherwise the task over-
head exceeds the task computation time and renders the paral-
lelization ineffective. MD-simulations usually require millions or
billions of timesteps. This demands a runtime of a few milliseconds
per timestep to reach a feasible total simulation time. Due to the
small problem size of typical MD-simulations and the demanded

https://doi.org/10.1145/3394277.3401858
https://doi.org/10.1145/3394277.3401858

PASC 20, June 29-July 1, 2020, Geneva, Switzerland

millisecond-runtime, we cannot rely on scaling the particle system
but have to reach sufficient strong scaling efficiency.

To be applicable in large-scale software projects such as GRO-
MACS or ScaFaCoS, a parallel programming approach for FMSolvr
needs to fulfill the following requirements:

¢ Sustainability and Compatibility: Provided as a library in
standard C++ for reasons of sustainability and compatibility
with the software stack on current and future HPC-systems.

e Maintainability and Extensibility: Designed with encap-
sulation, separation of concerns and further object oriented
programming concepts in mind to enable maintenance, ex-
tension and exchange of components like scheduling policies
and synchronization mechanisms.

e Performance and Scalability: Reach strong scaling on
modern multi-core architectures for fine-grained, dependent
tasks.

1.2 State of the Art

This leads to the question to what extent current parallel program-
ming approaches fulfill the aforementioned requirements. The de-
facto standard for shared memory parallelization in HPC is the
exploitation of loop-level parallelism with OpenMP [4]. Depending
on the algorithm, this may introduce load imbalances and leave se-
quential regions; especially in tree-based algorithms like the FMM.
Additionally, this approach requires a synthetic way of express-
ing parallelism in loops instead of algorithmic dependencies. That
these limitations hold in particular for the FMM is shown in [5],
[6] and [7]. The present work confirms these findings through the
performance analysis of a loop-parallel OpenMP-implementation
of FMSolvr.

Task-based parallelism emerged as an alternative to tackle the
limitations of loop-level parallelism. Task-based approaches aim
to reduce sequential regions and synchronization phases by ex-
pressing the parallelization of an algorithm along its tasks and task
dependencies. Common task-based approaches are provided by
Chapel [8], Charm++ [9], Intel TBB [10], HPX [11], Kokkos [12],
OpenMP, StarPU [13], PaRSEC [14] and X10 [15]; they are applied to
abroad range of applications from data mining via machine learning
through linear algebra and molecular dynamics. A comprehensive
taxonomy of current task-parallel programming technologies in
HPC is provided by Thoman et al. [16]. The authors differentiate
three types of technologies: languages, language-extensions and
libraries. In contrast to languages (e. g. Chapel, X10) and language-
extensions (e. g. OpenMP, Charm++, StarPU), libraries (e. g. HPX,
Intel TBB, Kokkos) are dependent on the availability of a regular
C++ compiler only. Hence, library-based approaches are beneficial
for our use case since they fulfill the sustainability and compatibility
requirement. Subsequently, we take a closer look at library-based
approaches.

HPX is a parallel runtime system that strictly adheres to the C++
standard and provides a user-friendly API for fine-grained task-
parallel programming on shared and distributed memory systems.
However, HPX employs a global address space (GAS). While the
employed global address space improves programmability, it does
not allow for custom communication algorithms which hurts our
extensibility requirement. According to [17], the increased amount

Haensel, Morgenstern, Beckmann, Kabadshow and Dachsel

of thread state information due to GAS leads to decreased appli-
cation performance. HPX-based FMMs are described in [17] and
[18].

Intel TBB is a C++-library that supports data and task paral-
lel programming on shared memory systems. As the successor of
deprecated Cilk and Cilk Plus, Intel TBB continues to employ the
approach of recursive task spawning to generate parallelism. Since
this means that tasks are created even if they are not yet executable,
it introduces additional scheduling overhead and increases memory
usage.

Kokkos is a C++-library that provides a performance portable,
user-friendly programming model for parallel programming on
CPUs and GPUs. According to [19], Kokkos reaches 90% of the per-
formance of application-specific parallelization approaches. Due
to its general applicability, Kokkos cannot take highly application-
specific knowledge such as critical paths or customized task pri-
orities into account. We aim to take such knowledge into account
for performance optimization even if this comes at the expense of
general applicability.

Due to the application of the FMM beyond MD, e. g. in plasma
physics and astrophysics, its parallelization with task- and data-flow
based approaches is heavily researched on shared and distributed
memory systems, multi-core, many-core and GPU-architectures.
However, a comparison of this broad range of FMM applications,
especially regarding performance and scalability, remains an open
research questions. This is due to the fact that diverse mathematical
and technical variants of the FMM operators exist, which lead to
different accuracy and performance behaviour. For classification
of the present work, we nevertheless provide a short outline on
parallel FMM implementations.

ExaFMM [20] is an open source FMM-library that supports
shared memory systems via OpenMP, distributed memory systems
via MPI as well as GPUs via CUDA. It aims at scaling large particle
simulations with billions of particles to exascale systems. For their
strong scaling test with 10% particles the group reports 93% par-
allel efficiency on 2048 processes. This result is highly promising
for the FMM in particular, as well as hierarchical algorithms in
general, to reach excellent scalability on exascale systems. In [21]
the task-parallel programming approaches Intel Cilk Plus, Intel
TBB and OpenMP tasks are applied to the DTT-part (Dual Tree
Traversal) of ExaFMM. The performance analysis reveals that In-
tel TBB perfectly scales up to 64 cores on KNL for 102 particles.
Hence, approaches with recursive task spawning are efficient for
compute-bound applications; however, no analysis is provided for
synchronization-critical applications.

In [22] a data-driven FMM with the runtime system QUARK [23]
is described. For particle ensembles with 107 particles the approach
leads to linear speed-up on 16 cores. The idea of breaking the
stages of the FMM into smaller tasks to improve load balancing is
furthermore applied and analyzed in [17], [5] and [24]. Since the
mentioned works consistently report advantages in scalability, the
present work extends the data-driven approach.

ScalFMM [24] is a parallel, C++ FMM-library. It is a kernel in-
dependent FMM, while FMSolvr is specialized on kernels with
spherical harmonic expansions. Since this may have an impact on
the parallelization approach and its performance, this complicates a
direct comparison of both implementations. The main objectives of

Eventify: Event-Based Task Parallelism for Strong Scaling

its software architecture are maintainability and understandability.
We consider these properties vital for sustainable HPC software.
Hence, FMSolvr pursues similar non-functional software require-
ments. A lot of research about task-based and data-driven FMMs is
based on ScalFMM. The authors devise the parallel data-flow of the
FMM for shared memory architectures in [24] and for distributed
memory architectures in [25]. For the StarPU-based FMM in [24]
strong scaling with a parallel efficiency of 91% is reached through
choosing a sufficiently large particle ensemble with 2 - 108 particles.
Since the number of particles in biochemical simulations can be
below 10° particles, we cannot follow this approach and increase
the amount of particles to reach strong scaling. Instead, the objec-
tive of the current work is to find a parallelization approach that
delivers sufficiently low overheads.

However, these works focus on the efficient computation of large,
often inhomogeneous, particle ensembles with millions of particles.
This leads to particular challenges regarding memory footprint,
scheduling policies and communication patterns for the applied
parallelization approaches. The focus of this work, however, is on
the efficient computation of small, homogeneous particle ensembles.
Hence, the overhead of the applied parallelization approaches can-
not be hidden through computational work, but must be reduced
to a minimum.

1.3 Unique Features of Eventify

With Eventify, we introduce a low-overhead, library-based, task-
parallel programming technology that targets strong scaling and
performance portability of applications with many, tiny, dependent
tasks. Eventify is published as open source under LGPL v2.1 and
available at www.fmsolvr.org. The focus of the present work is on
shared memory systems. However, the extension of Eventify to
distributed memory systems and GPUs is work in progress.

In comparison to other task-parallel programming technologies
the unique features of Eventify are:

e Event Lists: A convenient way to describe recurring task
dependency patterns in large task graphs.

o Static Event Dispatcher: Component of the task engine
that efficiently handles event lists.

¢ Reuse of Data Structures: The reuse of user-tuned algo-
rithmic data structures enables efficient dependency descrip-
tion and resolution.

e Bottom-Up Task Creation: A task is created as soon as
all of its input dependencies are resolved. In comparison to
recursive task spawning this reduces scheduling overhead
and memory footprint.

e Type-Driven Priority Queue: A data structure that stores
and priorities tasks of different types. This improves pro-
grammability and debuggability since no casting of function
pointers and translation of task types into priority values is
required.

Bringing together these features enables Eventify to strong scale
FMSolvr with its many, tiny, dependent tasks. Eventify is currently
applied to FMSolvr only. However, we consider the concept of event-
based task-parallelism to be directly applicable to further tree-based
algorithms with recurring dependency patterns such as Barnes-Hut
tree codes and multigrid methods.

PASC °20, June 29-July 1, 2020, Geneva, Switzerland

TaskFactory

LoadBalancer

MultiQueue III III III

Scheduler
std::thread | I [] l |

Core

Figure 1: An overview of the task engine.

[new Task [other Task
TaskFactory LoadBalancer Scheduler
’ l/ S~ A
Dispatcher]IDDD Dependency~
Counter
T MultiQueues ‘

Figure 2: The life-cycle of a task using the task engine.

1.4 Outline

The rest of the article is organized as follows. In Section 2 we
describe the software architecture and functionality of Eventify.
To keep the article self-contained, we describe the FMM for MD
and its parallelization potential in Section 3. Based thereon, its
implementation with OpenMP on the one hand, and Eventify on the
other hand is provided. Subsequently, a comparative performance
analysis is provided in Section 4. Finally, we summarize our results
and outline future work in Section 5.

2 EVENTIFY

In this Section, we describe the design and implementation of the
API and task engine of Eventify. The focus is on the two main
components of the task engine, the type-driven priority scheduler
as well as the static event dispatcher.

When aiming for sustainable high performance computing (HPC)
software it is vital to stick to certain design goals and guidelines.
For the development of the presented task engine we stick to three
main software requirements: correctness, maintainability and per-
formance portability. It is obvious that the implementation has to
produce correct results and needs to be maintainable. However,
performance portability is an extensive goal on its own and needs
further explanation. We advocate that it is neither possible nor
desirable to hand-tune code for every platform. Due to the fast
development of HPC hardware, a generic hardware independent
implementation is preferable. A high level of abstraction and en-
capsulation comes in handy as one tool to achieve performance
portable. This means that, library or system calls are only allowed
within certain specialized wrappers or interfaces. This leads to
exchangeable components by design.

PASC 20, June 29-July 1, 2020, Geneva, Switzerland

activity Processor Execution
Pre- Compu— Post-
Processing tation Processing

Figure 3: Three phase execution of the processor enabling
pre- and post-processing.

Figure 1 shows an overview of the main components of the
presented task engine. For each CPU core it consists of three private
components:

e astd::thread,
e a Scheduler and
e aMultiQueue.

At the beginning of the program the threads are forked once and as-
signed to a private scheduler. During the program execution no fur-
ther fork and join is required since the schedulers reuse the assigned
thread. Whenever new tasks are available, the scheduler executes
them depending on the scheduling strategy. Every scheduler owns
aMultiQueue. Depending on the scheduling and load-balancing strat-
egy, the queue can be accessed by other threads to remove or insert
tasks. Tasks can be created by any other task running on any thread
using the TaskFactory. The factory creates new tasks which are al-
ways “ready-to-execute” and hands them over to the LoadBalancer.
The LoadBalancer distributes the tasks among the threads and en-
queues them into the corresponding MultiQueue. The life-cycle of
a task is also shown in Figure 2. The high abstraction in the im-
plementation of the task engine leads to a single responsibility of
each component, which makes it easy to exchange components
whenever necessary. For the scheduling we use a work-stealing
scheduler, which starts stealing work from remote queues only if its
own queue is empty. Since the tasks do not involve any dependency
checks before the execution, all dependencies have to be fulfilled
before the task is created and enqueued as “ready-to-execute”.

The task itself consists of two parts. The first is a unique identi-
fier used for identifying the work unit of this task. Regarding the
Fast Multipole Method (FMM), this is a box index in the octree. The
second is a so called Processor reflecting the actual task executable.
This Processor is similar to a function callback encapsulated in
a class and shared among the threads. In the presented FMM im-
plementation, each Processor reflects a certain FMM operation.
The application of the unique identifier onto the execution method
of the Processor resembles the actual execution of the task. The
Processor itself is user-defined and needs to be implemented for
each task type. The default implementation of the Processor is
split into three phases to enable pre-processing and post-processing
besides the actual computation (see Figure 3).

2.1 Static Event Dispatcher

Data-flow-based parallelization uses a data-centric view and exe-
cutes operations with respect to the algorithm. For this purpose
the data-flow graph needs to be mapped to the program. This can
be done with an event dispatcher. Since the data-flow is known at
compile-time, it should be possible to configure it at compile-time

Haensel, Morgenstern, Beckmann, Kabadshow and Dachsel

as well. This leads to a flexible and configurable dispatcher without
runtime overhead because all dispatch methods are resolved at
compile-time.

2.1.1 Modeling Algorithmic Dependencies. There are two common
approaches to model algorithmic dependencies. The first is the
dependency graph which models the algorithm in a backward view.
The second is the data-flow graph modeling the dependencies in a
forward view. Both use the mathematical structure of a graph.

Unfortunately, there is no uniform definition of a dependency
graph in literature. Therefore, we call a directed acyclic graph (DAG)
a dependency graph, if it represents the dependencies of every piece
of data. This means, every vertex represent one and only one piece
of data and every edge represents one and only one manipulation
of it.

Insights into the parallelization can be obtained by the structure
of such a dependency graph. There exist several scientific publica-
tions showing how to partition those graphs and distribute the work
accordingly. Nevertheless, those approaches are limited by the com-
plexity of the optimal partitioning being NP-complete [26]. This
might introduce a significant overhead for synchronization-critical
applications.

For the parallel execution of an algorithm, the dependencies
need to be fulfilled before the next task can be executed. This can
be checked using the dependency graph. The drawback of this
approach is, that it requires the setup and traversal of the complete
graph within the program. Even if it is not required to store the
complete graph in memory, this introduces runtime overhead.

Additionally, it requires to create a significant number of tasks
upfront. Afterwards, the task engine needs to iterate over all created
tasks and check if their dependencies are met. This causes a constant
polling on the created tasks for checking the dependencies without
computation.

In contrast to the dependency graph, the data-flow graph does
not model every single piece of data. The data-flow graph is data-
centric and only models pipelines of data manipulations. In the data-
flow graph a vertex denotes an abstract operation in the algorithm,
whereas an edge denotes the input and output data of an operation.
It is important to mention, that edges and vertices only represent
abstract data and operations and not a concrete piece of data or
operation as in the dependency graph. The start node of the graph
is used for the algorithms input data. The input data is used and
manipulated by the following operations in the graph until the end
of the graph is reached. The last node in the graph represents the
output data of the algorithm.

Figure 11 shows the data-flow graph of the FMM. All operations
are represented by a single node in the graph and their correspond-
ing input and output data is denoted on the edges. As seen in this
example, the data-flow graph may contain cycles and is therefore
not acyclic.

2.1.2 Event-based Parallelization. The data-flow model can be im-
plemented using an event-based approach [27, p. 3]. This approach
comprises event-sources, that can trigger certain events. These
events are dispatched by an event dispatcher that calls the corre-
sponding event listeners. The specialization for the data-flow model
uses data events instead of more general event-sources. Those data
events reflect the progress of the operations achieved on the data.

Eventify: Event-Based Task Parallelism for Strong Scaling

trigger 1
event source 58

7
. ex
|
event source wd

trigger 3 |

/ event handler A

| — event handler B

event source

Figure 4: Schematic view of the static event dispatcher.

Conventional data-flow frameworks [28] offer a dynamic inter-
face for creating parts of the dependency graph and for registering
event listeners. This part has to be adapted depending on the algo-
rithmic flow. The main contribution of our static event dispatcher
is to allow configuration and resolving of the dispatch at compile-
time. Resolving the dispatch itself at compile-time leads to higher
performance as well as to higher robustness of the actual imple-
mentation.

2.1.3 Static Data-Flow Dispatcher. In contrast to run-time based
dispatcher implementations like the one available in Intel TBB [28],
we want to register the event-listener and resolve the dispatch
at compile-time. Therefore, we use template metaprogramming
for the configuration of the static event dispatcher. The concrete
event dispatcher is thereby only a type definition and not a state-
full object. Figure 4 shows a schematic view of the static event
dispatcher. In the presented implementation, the wiring inside the
dispatcher is evaluated at compile-time.

Listing 1: This listing shows the original staticEventdispatcher
used in the FMM implementation. The corresponding data-
flow graph can be found in Figure 11. The first EventListener
defines the following: When the event omeca is triggered, a
new M2M_Task is created. The other EventListeners work accord-
ingly.

1 using DataFlowDispatcher = EventlListenerContainer<

2 EventListener <OMEGA, Listener<M2M_Create>>,
3 EventListener <OMEGA, Listener<M2L_Create>>,
4
5

EventListener<MU, Listener<L2L_Create>>,
EventListener <MU_Lowest, Listener<L2P_Create>>>;

Listing 2: Call of the dispatch method using the
DataFlowDispatcher. In this example an omega was com-
puted and the event oMeca is dispatched for this box. The
actual follow-up task is determined by the event dispatcher
statically. With the concrete event dispatcher from Listing 1
this results in the creation of an m2m_Task and an m2L_Task.

// Run the computation for an omega

compute_omega (box_id);

// Resolve dependencies
EventDispatcher::dispatch<OMEGA>(box_id);

T R

To simplify the traversal of the data-flow graph we want to
discuss the details using a concrete example. Listing 1 shows the
static event dispatcher configuration corresponding to the data-flow
of the FMM as shown in Figure 11. An exemplary call to the dispatch
method, for dispatching an w, is shown in Listing 2. In this example,
we register four event listeners with the data events called oMEGa,
Mu and MU_Lowest. When the event is triggered, the corresponding
event handler registered with the Listener is called.

PASC °20, June 29-July 1, 2020, Geneva, Switzerland

task type A
base-

task type B
task P

task type C

queue of mixed tasks
O T # not possie

queue of base tasks

[ITTTTTTT] ¢possble

Figure 5: Classical queue involving virtual inheritance.

BaseTasks
— Tasks

[~ Pr2Mm
[J<1] M2Mm
[« M2L
[« roL
[J«{] L2P
[J«<{] pop
[J«{x] Other

MultiQueue

Figure 6: MultiQueue using three priority sub-queues and a
backfill sub-queue.

All event listeners are registered in the EventListenerContainer via
a variadic template pack. For the registration of an additional event
listener a new template parameter is simply appended to this pack.
The call of the dispatch method on the EventListenerContainer for-
wards the call to all registered event listeners. Afterwards, each
event listener filters the triggered event using compile-time branch-
ing (substitution failure is not an error (SFINAE)). If the triggered
event and the registered event match, the corresponding event
handler is called. Otherwise, the dispatch call is empty. We can
safely assume that modern C++ compilers will discard all empty
functions during compilation. Again, we would like to emphasize
that calling a dispatch method at run-time results in the direct call
to the corresponding listeners, without any resolving overhead.

Additionally, the presented event dispatcher in Listing 1 looks
comparable to a domain-specific-language, while being written in
pure C++ via template metaprogramming,.

2.2 Type-Driven Priority Scheduler

The second component of the task engine is the type-driven priority
scheduler. That is used to execute tasks in a given order reflecting
the critical path of the parallelization. Compared to conventional
priority queues, we propose a lightweight implementation with less
instructions required for inserting new tasks and the same amount
required for dequeuing tasks. Additionally, our implementation is
highly flexible and could also be used for other applications that
require prioritization.

2.2.1 Task Prioritization. To maintain enough parallelism within
the FMM it is required to execute the critical path prioritized. Tasks

PASC 20, June 29-July 1, 2020, Geneva, Switzerland

initially created from the input provide enough work for all threads.
However, due to the tree-based structure of the FMM, with every
step upwards in the tree less tasks are created than consumed.
Therefore, the upwards operations need to be prioritized, while new
tasks outside the critical path are kept as backfill. This guarantees
enough parallelism once the root node of the tree with only one
task is reached. With every step downwards from the root node
more tasks are created than consumed and enough parallelism is
available again.

Within FMSolvr the FMM operators are reflected by different
task types. Therefore we can infer the priority only from the task
type. For the implementation of the queue this poses two problems.
The first problem is how to implement the prioritizing of tasks. The
second problem refers to the storage of tasks of different types in
the same queue.

For the required prioritization there are two conventional ap-
proaches. The first is to utilize min-max heaps [29, 30] for the under-
lying queue container and the second one is to create a fixed number
of sub-queues representing the different priorities. Min-max heaps
cause logarithmic complexity for inserting and extraction. Having
multiple sub-queues allows constant complexity for inserting and
extraction.

The common solution for the second problem of different types
of tasks involves virtual inheritance. Instead of working with the
concrete type of a class a common virtual base class is used to store
the tasks in a single queue. However, by using a common virtual
base class it becomes too expensive to distinguish tasks depending
on the concrete type. As described earlier, the type of the task is
required for inferring the priority.

To solve both problems, we propose the multi-queue concept.

2.2.2 Multi-Queue. Figure 6 shows the multi-queue concept. The
multi-queue consists of several sub-queues depending on the re-
quired number of priorities. These sub-queues store concrete tasks
with their concrete types and are called typed sub-queues in the
following sections. The ordering of the sub-queues in the definition
represents the different priorities. Additionally, a backfill sub-queue
using virtual inheritance for tasks without priority is available.
Due to the fact that the actual prioritization is quite specific to the
algorithm, we offer an interface to easily change the collection of
typed sub-queues and hence the prioritization. The available typed
sub-queues as well as their ordering is expressed in a template
parameter list in a type definition. Listing 3 shows the concrete
definition for the multi-queue used in the FMM implementation. In
this specific example, the types of the M2MTasks, M2LTasks and L2LTasks
are prioritized in this order and all other tasks are enqueued in the

backfill queue.

Listing 3: Definition of the multi-queue used in the FMM im-
plementation. Here, we create typed sub-queues for M2M,
M2L and L2L tasks with priorities in this order.

1 using multi_queue =
2 MultiQueue<M2MTask, M2LTask, L2LTask>;

The implementation of the collection of sub-queues utilizes
std: : tuple. All sub-queues are elements of the tuple. Since we can
iterate over the tuple it is possible to select the correct sub-queue

Haensel, Morgenstern, Beckmann, Kabadshow and Dachsel

during compile-time. This can be implemented by recursively iterat-
ing over the tuple and choosing the correct sub-queue by comparing
the types using constant expressions [31]. If a C++14 compiler is
available, the std::get method for retrieving tuple elements by type
can be used. As any other queue our multi-queue needs to pro-
vide an enqueue and dequeue method. The enqueue method of the
multi-queue uses a template parameter to deduce the concrete type
of an inserted task. With this type the corresponding sub-queue
can be selected and the task can be inserted correspondingly. The
selection of the correct sub-queue depends only on the type of the
task and can therefore be set up at compile-time. It is important
to note that the enqueue method directly uses the sub-queue for
inserting new tasks. This results in the same number of instructions
required for inserting into a single queue.

The dequeuing from the multi-queue has the same constant
complexity as dequeuing from an enumerated priority queue. The
procedure is as follows:

(1) All sub-queues are checked for available tasks.
(2) Whenever a sub-queue is not empty a task is dequeued from
this sub-queue.

Up until now we did not discuss the backfill sub-queue. An
algorithm might have dozens of different task types, but only a
few need to be prioritized. Using typed sub-queues for each of
these task types would unnecessarily increase the number of sub-
queues. That is why we added a backfill sub-queue that is based on
virtual inheritance. All task types that are not explicity named in
the multi-queue definition (see Listing 3) are non-prioritized and
thus processed by the backfill sub-queue. Considering our use case
FMSolvr, tasks of the types P2M, L2pP and P2P are non-prioritized and
thus added to the backfill sub-queue (cf. Listing 3 and Figure 6).
This can be done with all tasks which are not critical and hence do
not need to preserve their type.

3 USE CASE

3.1 Fast Multipole Method

The FMM is an algorithm for solving the N-body problem. The
N-body problem is about the calculation of pairwise interactions
of particles or objects resulting from electrostatic or gravitational
potentials. The naive computation of all these interactions in such
N-body problems exhibits a computational complexity of O(N?),
with N denoting the number of particles. With the FMM this can
be reduced to linear complexity. For further details on the FMM we
refer to [32, 33]. The idea behind the algorithm is as follows:

(1) The simulation space is subdivided in order to group the
particles into a set of 8¢ boxes.

(2) Particles in the near field interact directly.

(3) All other boxes interact in the far field via expansions.

The sequential flow of the FMM is shown in Figure 7. First, the
particles with their positions x and their charges q are binned into
a tree. The desired accuracy of the resulting energy E, the forces F
and the potential ® is given by the user. According to this accuracy,
the FMM specific parameters depth d of the tree, well-separateness
criteria ws and multipole order p are determined to achieve minimal
run-time.

Eventify: Event-Based Task Parallelism for Strong Scaling

d
P~ P2M M2M M2L L2L L2P P2P

ws Far Field Near Field

Figure 7: The sequential workflow of the FMM. The compu-
tation is split into far field and near field computation. The
input parameters are the coordinates x and the charges ¢
of the particles. The accuracy of the algorithm can be influ-
enced by the depth d of the tree, the well-separation criteria
ws and the multipole order p. After the sequential execution
of all operators (e.g. P2M, M2M, ...) the energy E, the forces
F and the potential ¢ are computed.

2 > N 2 ol
BB B E R ey
» » Ak * * » Ly EX

glalzlolziollolololololololl

Figure 8: Multipole to Multipole operation

@ w///;\\\u
o o o o e
o o @ E @8 @ @

~ -
0@ EEEEEEEEEEEEE @

Figure 9: Multipole to Local operation

IF] IF] i "
Pz 2 O 4 O 4 N R R A 1
) (0) ()) (0) ()) 0) () 20 ())

Figure 10: Local to Local operation

For simplicity we discuss binary trees only, although the imple-
mentation is done in 3D requiring an octree. For the computation
of the far field, the FMM uses multipole expansions » and local
expansions y. These expansions can be transformed with the help
of three operators. These operators, namely M2M, M2L and L2L
have a complexity of O(p*) or O(p*) depending on the implemen-
tation. The far field computation starts with the expansion of parti-
cles into multipoles, the so-called P2M operation. This operation

PASC °20, June 29-July 1, 2020, Geneva, Switzerland

w H
x,q w Q w ’ H H \L F.¢
S P2\ pug M2M peg M2L pug L2L g LoP [
|
X,q — H F ¢
IS

Figure 11: Dependencies between the operators of the FMM.
The edges denote the data whereas the vertices denote the
operators.

has a computational complexity of O(Np?). After the construction
of all multipoles for each box on the lowest level, the multipoles
are shifted towards the root node and are accumulated with the
M2M operator (see Figure 8). These multipole expansions are then
translated into local expansions with the multipole to local (M2L)
operator (see Figure 9). After all local expansions on each level are
computed, the local to local (L2L) operator is used to shift the local
expansions downwards (see Figure 10). After the local expansions
are shifted down to the lowest level, the far field potential and
forces for the particles in each box are computed with the local to
particle (L2P) operator in O(Np?) complexity. After the far field
computation, the near field potential and forces are computed with
a direct solver called particle to particle (P2P) in O(M?) complexity,
where M denotes the number of particles interacting in the near
field.

3.2 OpenMP FMSolvr

In the OpenMP version of FMSolvr each step of the FMM, namely
P2M, M2M, M2L, L2L, L2P and P2P, is parallelized by means of
#pragma omp parallel for. For M2M, M2L, L2L and P2P we
apply collapse(3) in order to generate sufficient parallelism in
these steps. In addition, we apply schedule(runtime) to define
a scheduling policy, e.g. static, guided or dynamic, via the en-
vironment variable OMP_SCHEDULE at runtime. Since loop-parallel
implementations of the FMM with OpenMP are already well stud-
ied, i.a. in [7], [5] and [20], we do not elaborate on yet another
loop-parallel FMM implementation in this work.

3.3 Eventify FMSolvr

To dissolve the synchronizations induced by the sequential algo-
rithm and preserved in the OpenMP version of FMSolvr, we need to
model the data dependencies between the operations. In Eventify,
we do so with event lists. Figure 11 shows the dependency graph of
the FMM. In the graph, the edges denote the data and the vertices
denote the operators performed on the data. The data-flow graph
shows that the next operation on a certain expansion or y can be
started as soon as the expansion is computed. By sticking to those
data dependencies only, we can get rid of the sequential workflow
in our implementation completely and can still guarantee a correct
result. For example, an M2L operation in one box can be started as
soon as the multipole of this box is computed. This is independent
from P2M operations in other boxes.

To provide a reasonable task granularity we combine tasks into
the following groups: We combine eight M2M operations of all child

PASC 20, June 29-July 1, 2020, Geneva, Switzerland

boxes towards the parent box into a single M2M task. For the M2L
operation we group all 189 operations from a single box towards all
interacting target boxes together. The L2L task encompasses eight
shift operations from a parent box towards its eight child boxes.
Finally, we group all L2P operations moving the expansion from
the center of a box towards the particle positions into a single L2P
task.

Beside the non-trivial inter-task dependencies shown in Fig-
ure 11 we have another bottleneck coming in unfavorably. Due to
the tree structure and the dependencies between the operations, we
are losing parallelism in the upward M2M operations. Eventually,
this results in a single M2M operation at the root node. All follow-
ing downward operations (L2L) depend on this single operation.
Fortunately, this can be overlapped due to the availability of M2L
operations on lower levels, which are independent from the down-
wards operation (L2L) on higher levels. Hence, it is very important
to execute the algorithm along the critical path to maintain enough
parallelism. This means that we should compute all available M2M
tasks towards the root node, before computing further M2L tasks
on lower levels. After this operation, enough tasks are generated on
the lower levels (e.g. M2L) to avoid starvation during the upwards
phase.

4 PERFORMANCE ANALYSIS

In this section, we analyze the performance of the parallel FMM-
implementations described in Section 3.

4.1 Hardware

All measurements were performed on a 4-socket system equipped
with four Intel Xeon E7-4830 v4 CPUs (Broadwell). Each CPU pro-
vides 14 physical two-way SMT-cores. Hence, the full compute node
covers 56 physical cores and 112 logical cores, respectively.

4.2 Input Data Set

Our input data set is an amorphous silicon dioxide (SiO2) melt con-
sisting of 103680 particles. As common in biochemistry, it exhibits
a relatively homogeneous charge distribution. As a realistic input
data set, it was applied for the comparison of several algorithms
that solve the N-body problem in [2]. Since we aim at the evaluation
of Eventify for synchronization-critical input data sets with low
computational effort, the accuracy settings are low, but realistic.
Accordingly, we set the multipole order p = 4 and the tree depth
d=5.

4.3 Measurement Method

To obtain reliable test results each measuring point represents
the mean value of ten equal runtime measurements. For each
experiment, the runtime was measured for a number of threads
#Threads = 1, .. ., 56, since this covers measurements for the single-
threaded version as well as the utilization of all physical cores.

Intel’s Turbo Boost was disabled during all measurements. This
hardware feature adjusts core clock frequencies depending on work
load and the number of running threads. Since the clock frequency
for the single-threaded implementation is automatically increased,
this distorts scaling plots.

Haensel, Morgenstern, Beckmann, Kabadshow and Dachsel

] \
H 100 |
L I
£ ot
E = A A
Z static Xl““?qi

| —— guided

—— dynamic

10-1 | | |
1 2 4 8 16 32 56

#Threads

Figure 12: Runtime of FMSolvr with OpenMP scheduling
policies static, guided and dynamic.

For Eventify, we make use of the environment variable LD_PRELOAD

to load jemalloc, which is a general purpose malloc implementation
that emphasizes fragmentation avoidance and scalable concurrency
support [34]. In comparison to the default glibc allocator, jemalloc
improves the performance of the large amount of concurrent allo-
cations required by task creation. For OpenMP, we do not employ
jemalloc since it does not lead to any performance gain.

For efficiency plots, we apply the definition of parallel efficiency
provided by Rauber et al. [35]: Ep(n) = f%’ where T*(n) is
the sequential execution time of the best sequential algorithm and
Tp(n) is the parallel execution time on p processors. However, in
practice it is not feasible to determine the best sequential algorithm
and its implementation for the FMM since there are diverse options
to implement the workflow and the operators of the method. As a
feasible solution, we execute OpenMP FMSolvr with a single thread
to determine the sequential runtime T*(n). This is reasonable since
OpenMP FMSolvr does not contain any parallelization overhead
when executed with a single thread and furthermore provides the
fastest sequential runtime of the FMM-implementations studied in
this work.

4.4 OpenMP FMSolvr: Scheduling Policies

Figure 12 shows the runtime of FMSolvr with the OpenMP schedul-
ing policies [4] static, guided and dynamic. For #Threads < 14 the
policies guided and dynamic provide the smallest runtimes. The
smallest runtime of OpenMP FMSolvr is 260 ms and is reached with
the scheduling policy dynamic at #Threads = 55. However, it is
hard to determine the best scheduling policy for #Threads > 14
since the runtime exhibits heavy variations. One reason for these
variations is thread migration between cores and thus varying mem-
ory access times. We observed thread migration for #Threads > 14
even though we pinned threads to cores with the thread affinity set-
tings OMP_PROC_BIND=close and OMP_PLACES=cores. This may be
due to the fact that the determination of whether the affinity request
can be fulfilled is implementation defined according to the OpenMP
standard [4]. Nevertheless, the reasons for the runtime variations
need further research.

Eventify: Event-Based Task Parallelism for Strong Scaling

10°

Runtime in s

s work stealing off

—e— work stealing on

-1 |
10 1 2 4 8 16 32 56

#Threads

Figure 13: Runtime of Eventify FMSolvr with and without
work stealing.

4.5 Eventify FMSolvr: Scheduling Policies

The plot in Figure 13 provides a runtime comparison for Eventify
FMSolvr with and without work stealing. As the plot shows, the
version with work stealing is clearly beneficial compared to the
version without work stealing. The smallest runtime is 126 ms and
accordingly reached with work stealing at #Threads = 53. In com-
parison to OpenMP FMSolvr we do not apply any thread affinity
settings for Eventify FMSolvr since the focus of this work is only
on the essential concepts of Eventify. Detailed studies on thread
affinity and data locality for FMSolvr are provided in [36].

4.6 Eventify vs. OpenMP

Figure 14 and Figure 15 provide a comparison of the OpenMP
and Eventify version that performed best in the previous experi-
ments. Expectedly, OpenMP Fmsolvr is beneficial for low amounts
of threads #Threads < 14. First, this is because OpenMP loop-
parallelism introduces nearly no parallelization overhead since
it does neither create nor manage tasks. Second, this is because
OpenMP sticks to our thread affinity settings for #Threads < 14
and thus can benefit from improved data locality. However, for
#Threads > 14 Eventify FMSolvr is beneficial in terms of run-
time and scalability. The overall smallest runtime is 126 ms and is
reached by Eventify FMSolvr at #Threads = 53. In comparison to
the smallest runtime reached by OpenMP FMSolvr this is a runtime
improvement of 52 %.

5 CONCLUSION AND FUTURE WORK

We presented a task engine specialized for synchronization-critical
applications. This task engine encompasses two main components,
a type-driven priority scheduler as well as a static event dispatcher.

The type-driven priority scheduler fulfills the requirement of
prioritizing tasks along the critical path while preserving important
type information. This increases the robustness tremendously with-
out imposing new overheads or performance bottlenecks usually
introduced by priority queues. On the contrary, we even improved
the performance due to compile-time resolution of the correct sub-
queue via template metaprogramming. This leads to the situation
where inserting into our multi-queue is as lightweight as inserting
into a single queue.

PASC °20, June 29-July 1, 2020, Geneva, Switzerland

10°

Runtime in s

| —— Eventify FMSolvr

—— OpenMP FMSolvr

-1 |
10 1 2 4 3 16 32 56

#Threads

Figure 14: Runtime comparison of Eventify FMSolvr (work
stealing on) and OpenMP FMSolvr (dynamic) with the re-
spective optimal scheduling policy.

0 __________________________

>

Q

<

2

Q

3=

5

=

= |- Ideal

& | —s— Eventify FMSolvr

—— OpenMP FMSolvr ‘ ‘ ‘
1 2 4 8 16 32 56
#Threads

Figure 15: Parallel efficiency of Eventify FMSolvr (work
stealing on) and OpenMP FMSolvr (dynamic) with the re-
spective optimal scheduling policy.

The static event dispatch framework is highly configurable at
compile-time, while providing the best possible performance of
dispatching due to the compile-time branching. The definition of
a concrete event dispatcher resembles a domain specific language,
although it is pure C++ code. This opens the possibility for other
application developers to adapt and apply this concept for their
needs.

The results prove the readiness of modern software development
approaches to sufficiently strong scale even synchronization-critical
HPC simulations. This will be the key for utilizing supercomputers
in the upcoming exascale era. Nevertheless, there is still potential
for optimization.

The first bottleneck is caused by Non-uniform memory access
(NUMA). NUMA effects occur when data is located or transferred
between memory nodes of different CPUs. Since the latency dif-
ference between local and remote memory accesses leads to per-
formance loss, we have to develop NUMA-aware data distribu-
tion, thread pinning and work-stealing policies. First results of our
NUMA-aware FMM implementation can be found in [36].

The second bottleneck is caused by the use of std: :mutex as lock-
ing mechanism. The implementation of these locks causes perfor-
mance loss due to cache coherency. Cache coherency becomes even
more expensive when crossing NUMA-borders. A strategy to re-
duce the pressure on the cache coherence protocol is the usage of

PASC 20, June 29-July 1, 2020, Geneva, Switzerland

scalable locks like the MCS-lock [37]. Additionally, it is conceivable
to implement lock-free strategies for the multi-queue.

The third bottleneck are the fine-grained allocations due to task
creation and deletion. Even with the use of jemalloc, this bottleneck
poses still a considerable overhead. Nevertheless, this can be solved
by reusing task objects from a memory pool.

In conclusion, this paper opens a perspective to overcome future
quantitative changes in hardware with the help of good software
design and with an implementation with a high level of abstraction.
From our point of view, the importance of proper software engineer-
ing in high performance computing will increase tremendously.

6

ACKNOWLEDGMENTS

This project was partly supported by the DFG priority programme
Software for Exascale Computing (SPP 1643).

REFERENCES

(1]

[2

=

3

=

[10

[11]

[12]

[13]

M. J. Abraham, T. Murtola, R. Schulz, S. P4ll, J. C. Smith, B. Hess, and E. Lindahl,
“GROMACS: High performance molecular simulations through multi-level
parallelism from laptops to supercomputers,” SoftwareX, vol. 1-2, pp. 19 -
25, 2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
$2352711015000059

A. Arnold, F. Fahrenberger, C. Holm, O. Lenz, M. Bolten, H. Dachsel, R. Halver,
1. Kabadshow, F. Gahler, F. Heber, J. Iseringhausen, M. Hofmann, M. Pippig,
D. Potts, and G. Sutmann, “Comparison of scalable fast methods for long-range
interactions,” Phys. Rev. E, vol. 88, p. 063308, Dec 2013. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevE.88.063308

1. Kabadshow, H. Dachsel, C. Kutzner, and T. Ullmann, “GROMEX - Unified
Long-range Electrostatics and Flexible Ionization,” http://www.mpibpc.mpg.de/
15304826/inSiDE_autumn2013.pdf, 2013 (accessed April 27, 2017).

OpenMP Architecture Review Board, “OpenMP application programming
interface version 5.0, 2018. [Online]. Available: https://www.openmp.org/wp-
content/uploads/OpenMP- API-Specification-5.0.pdf

P. Atkinson and S. McIntosh-Smith, “On the Performance of Parallel Tasking
Runtimes for an Irregular Fast Multipole Method Applicatio,” in Scaling OpenMP
for Exascale Performance and Portability, B. R. de Supinski, S. L. Olivier, C. Ter-
boven, B. M. Chapman, and M. S. Miiller, Eds. Cham: Springer International
Publishing, 2017, pp. 92-106.

K. Taura, J. Nakashima, R. Yokota, and N. Maruyama, “A Task Parallel Imple-
mentation of Fast Multipole Methods,” in 2012 SC Companion: High Performance
Computing, Networking Storage and Analysis, Nov 2012, pp. 617-625.

E. Agullo, O. Aumage, B. Bramas, O. Coulaud, and S. Pitoiset, “Bridging the
Gap Between OpenMP and Task-Based Runtime Systems for the Fast Multipole
Method,” IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 10, pp.
2794-2807, Oct 2017.

B. Chamberlain, D. Callahan, and H. Zima, “Parallel Programmability and the
Chapel Language,” Int. J. High Perform. Comput. Appl., vol. 21, no. 3, pp. 291-312,
Aug. 2007. [Online]. Available: http://dx.doi.org/10.1177/1094342007078442

L. V. Kale and S. Krishnan, “CHARM++: A Portable Concurrent Object Oriented
System Based on C++, in Proceedings of the Eighth Annual Conference on
Object-oriented Programming Systems, Languages, and Applications, ser. OOPSLA
’93. New York, NY, USA: ACM, 1993, pp. 91-108. [Online]. Available:
http://doi.acm.org/10.1145/165854.165874

C. Pheatt, “Intel Threading Building Blocks,” J. Comput. Sci. Coll., vol. 23, no. 4,
pp. 298-298, Apr. 2008. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1352079.1352134

H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey, “HPX: A Task
Based Programming Model in a Global Address Space,” in Proceedings of the
8th International Conference on Partitioned Global Address Space Programming
Models, ser. PGAS ’14. New York, NY, USA: ACM, 2014, pp. 6:1-6:11. [Online].
Available: http://doi.acm.org/10.1145/2676870.2676883

H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling manycore
performance portability through polymorphic memory access patterns,” Journal
of Parallel and Distributed Computing, vol. 74, no. 12, pp. 3202 — 3216, 2014,
domain-Specific Languages and High-Level Frameworks for High-Performance
Computing. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0743731514001257

C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU: A Unified
Platform for Task Scheduling on Heterogeneous Multicore Architectures,”
CCPE - Concurrency and Computation: Practice and Experience, Special

[14

[15

(17]

(18]

[19]

[20]

[21

[22

~
&

[24

[25]

~
=

)
&

@
=

Haensel, Morgenstern, Beckmann, Kabadshow and Dachsel

Issue: Euro-Par 2009, vol. 23, pp. 187-198, Feb. 2011. [Online]. Available:
http://hal.inria.fr/inria-00550877

R. Bagrodia, R. Meyer, M. Takai, Yu-An Chen, Xiang Zeng, J. Martin, and Ha Yoon
Song, “Parsec: a parallel simulation environment for complex systems,” Computer,
vol. 31, no. 10, pp. 77-85, Oct 1998.

P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von
Praun, and V. Sarkar, “X10: An Object-oriented Approach to Non-uniform
Cluster Computing,” in Proceedings of the 20th Annual ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages, and Applications, ser.
OOPSLA *05. New York, NY, USA: ACM, 2005, pp. 519-538. [Online]. Available:
http://doi.acm.org/10.1145/1094811.1094852

P. Thoman, K. Dichev, T. Heller, R. Iakymchuk, X. Aguilar, K. Hasanov,
P. Gschwandtner, P. Lemarinier, S. Markidis, H. Jordan, T. Fahringer, K. Katrinis,
E. Laure, and D. S. Nikolopoulos, “A taxonomy of task-based parallel
programming technologies for high-performance computing,” The Journal of
Supercomputing, vol. 74, no. 4, pp. 1422-1434, Apr 2018. [Online]. Available:
https://doi.org/10.1007/s11227-018-2238-4

B. Zhang, “Asynchronous Task Scheduling of the Fast Multipole Method
Using Various Runtime Systems,” in Proceedings of the 2014 Fourth Workshop
on Data-Flow Execution Models for Extreme Scale Computing, ser. DFM ’14.
Washington, DC, USA: IEEE Computer Society, 2014, pp. 9-16. [Online].
Available: https://doi.org/10.1109/DFM.2014.14

Z. Khatami, H. Kaiser, P. Grubel, A. Serio, and J. Ramanujam, “A Massively
Parallel Distributed N-body Application Implemented with HPX,” in Proceedings
of the 7th Workshop on Latest Advances in Scalable Algorithms for Large-Scale
Systems, ser. ScalA ’16. Piscataway, NJ, USA: IEEE Press, 2016, pp. 57-64.
[Online]. Available: https://doi.org/10.1109/ScalA.2016.12

H. C. Edwards and C. R. Trott, “Kokkos: Enabling Performance Portability Across
Manycore Architectures,” in 2013 Extreme Scaling Workshop (xsw 2013), Aug 2013,
pp. 18-24.

R. Yokota and L. A. Barba, “A tuned and scalable fast multipole method as a
preeminent algorithm for exascale systems,” The International Journal of High
Performance Computing Applications, vol. 26, no. 4, pp. 337-346, 2012. [Online].
Available: https://doi.org/10.1177/1094342011429952

M. Abduljabbar, M. Al Farhan, R. Yokota, and D. Keyes, “Performance Evaluation
of Computation and Communication Kernels of the Fast Multipole Method on
Intel Manycore Architecture,” in Euro-Par 2017: Parallel Processing, F. F. Rivera,
T.F. Pena, and J. C. Cabaleiro, Eds. Cham: Springer International Publishing,
2017, pp. 553-564.

H. Ltaief and R. Yokota, “Data-Driven Execution of Fast Multipole Methods,”
CoRR, vol. abs/1203.0889, 2012. [Online]. Available: http://arxiv.org/abs/1203.0889
A. YarKhan, J. Kurzak, and J. Dongarra, “QUARK Users’ Guide: QUeueing And
Runtime for Kernels,” 2011.

E. Agullo, B. Bramas, O. Coulaud, E. Darve, M. Messner, and T. Takahashi,
“Task-Based FMM for Multicore Architectures,” SIAM Journal on Scientific
Computing, vol. 36, no. 1, pp. C66—-C93, 2014. [Online]. Available: https:
//doi.org/10.1137/130915662

E. Agullo, B. Bramas, O. Coulaud, M. Khannouz, and L. Stanisic, “Task-
based fast multipole method for clusters of multicore processors,” Inria
Bordeaux Sud-Ouest, Research Report RR-8970, Mar. 2017. [Online]. Available:
https://hal.inria.fr/hal-01387482

L. Hyafil and R. Rivest, Graph Partitioning and Constructing Optimal Decision
Trees are Polynomial Complete Problems, ser. Laboratoire de Recherche: Rapport
de recherche. 1IRIA, 1973.

N. Goodspeed, “A proposal to add coroutines to the C++ standard library (Revision
1) 2014.

(2017) Intel TBB Data Flow and Dependence Graphs. [Online]. Available:
https://software.intel.com/en-us/node/517340

M. D. Atkinson, J.-R. Sack, N. Santoro, and T. Strothotte, “Min-max heaps and
generalized priority queues,” Communications of the ACM, vol. 29, no. 10, pp.
996-1000, 1986.

N. M. Josuttis, The C++ standard library: a tutorial and reference. Addison-Wesley,
2012.

(2011) Constant Expression. [Online]. Available: http://en.cppreference.com/w/
cpp/language/constant_expression

L. Greengard and V. Rokhlin, “A fast algorithm for particle simulations,” Journal
of computational physics, vol. 73, no. 2, pp. 325-348, 1987.

1. Kabadshow, Periodic boundary conditions and the error-controlled fast multipole
method. Forschungszentrum Jiilich, 2012, vol. 11.

J. Evans, “jemalloc memory allocator,” http://jemalloc.net/, 2017 (accessed April
11, 2017).

T. Rauber and G. Riinger, Parallel Programming for Multicore and Cluster Systems.
Springer Berlin Heidelberg, 2010.

L. Morgenstern, “A NUMA-Aware Task-Based Load-Balancing Scheme for the
Fast Multipole Method,” Master Thesis, TU Chemnitz, 2017.

M. Herlihy and N. Shavit, The Art of Multiprocessor Programming. ~Morgan
Kaufmann, 2011.

http://www.sciencedirect.com/science/article/pii/S2352711015000059
http://www.sciencedirect.com/science/article/pii/S2352711015000059
http://link.aps.org/doi/10.1103/PhysRevE.88.063308
http://www.mpibpc.mpg.de/15304826/inSiDE_autumn2013.pdf
http://www.mpibpc.mpg.de/15304826/inSiDE_autumn2013.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
http://dx.doi.org/10.1177/1094342007078442
http://doi.acm.org/10.1145/165854.165874
http://dl.acm.org/citation.cfm?id=1352079.1352134
http://dl.acm.org/citation.cfm?id=1352079.1352134
http://doi.acm.org/10.1145/2676870.2676883
http://www.sciencedirect.com/science/article/pii/S0743731514001257
http://www.sciencedirect.com/science/article/pii/S0743731514001257
http://hal.inria.fr/inria-00550877
http://doi.acm.org/10.1145/1094811.1094852
https://doi.org/10.1007/s11227-018-2238-4
https://doi.org/10.1109/DFM.2014.14
https://doi.org/10.1109/ScalA.2016.12
https://doi.org/10.1177/1094342011429952
http://arxiv.org/abs/1203.0889
https://doi.org/10.1137/130915662
https://doi.org/10.1137/130915662
https://hal.inria.fr/hal-01387482
https://software.intel.com/en-us/node/517340
http://en.cppreference.com/w/cpp/language/constant_expression
http://en.cppreference.com/w/cpp/language/constant_expression
http://jemalloc.net/

	Abstract
	1 Introduction
	1.1 Challenge
	1.2 State of the Art
	1.3 Unique Features of Eventify
	1.4 Outline

	2 Eventify
	2.1 Static Event Dispatcher
	2.2 Type-Driven Priority Scheduler

	3 Use Case
	3.1 Fast Multipole Method
	3.2 OpenMP FMSolvr
	3.3 Eventify FMSolvr

	4 Performance Analysis
	4.1 Hardware
	4.2 Input Data Set
	4.3 Measurement Method
	4.4 OpenMP FMSolvr: Scheduling Policies
	4.5 Eventify FMSolvr: Scheduling Policies
	4.6 Eventify vs. OpenMP

	5 Conclusion and Future Work
	6 Acknowledgments
	References

