000889150 001__ 889150
000889150 005__ 20210127115300.0
000889150 0247_ $$2Handle$$a2128/26688
000889150 037__ $$aFZJ-2021-00075
000889150 1001_ $$0P:(DE-HGF)0$$aKohnke, Bartosz$$b0$$eCorresponding author
000889150 245__ $$aGROMEX: A Scalable and Versatile Fast Multipole Method for Biomolecular Simulation
000889150 260__ $$aCham$$bSpringer International Publishing$$c2020
000889150 29510 $$aSoftware for Exascale Computing - SPPEXA 2016-2019
000889150 300__ $$a517-543
000889150 3367_ $$2ORCID$$aBOOK_CHAPTER
000889150 3367_ $$07$$2EndNote$$aBook Section
000889150 3367_ $$2DRIVER$$abookPart
000889150 3367_ $$2BibTeX$$aINBOOK
000889150 3367_ $$2DataCite$$aOutput Types/Book chapter
000889150 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$bcontb$$mcontb$$s1610216051_3538
000889150 4900_ $$aLecture Notes in Computational Science and Engineering
000889150 500__ $$aDOI: 10.1007/978-3-030-47956-5_17
000889150 520__ $$aAtomistic simulations of large biomolecular systems with chemical variability such as constant pH dynamic protonation offer multiple challenges in high performance computing. One of them is the correct treatment of the involved electrostatics in an efficient and highly scalable way. Here we review and assess two of the main building blocks that will permit such simulations: (1) An electrostatics library based on the Fast Multipole Method (FMM) that treats local alternative charge distributions with minimal overhead, and (2) A λ-dynamics module working in tandem with the FMM that enables various types of chemical transitions during the simulation. Our λ-dynamics and FMM implementations do not rely on third-party libraries but are exclusively using C++ language features and they are tailored to the specific requirements of molecular dynamics simulation suites such as GROMACS. The FMM library supports fractional tree depths and allows for rigorous error control and automatic performance optimization at runtime. Near-optimal performance is achieved on various SIMD architectures and on GPUs using CUDA. For exascale systems, we expect our approach to outperform current implementations based on Particle Mesh Ewald (PME) electrostatics, because FMM avoids the communication bottlenecks caused by the parallel fast Fourier transformations needed for PME.
000889150 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000889150 536__ $$0G:(GEPRIS)214420555$$aSPPEXA - Software for Exascale Computing (214420555)$$c214420555$$x1
000889150 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x2
000889150 7001_ $$0P:(DE-HGF)0$$aUllmann, Thomas R.$$b1
000889150 7001_ $$0P:(DE-Juel1)157750$$aBeckmann, Andreas$$b2
000889150 7001_ $$0P:(DE-Juel1)132152$$aKabadshow, Ivo$$b3
000889150 7001_ $$0P:(DE-Juel1)161429$$aHaensel, David$$b4
000889150 7001_ $$0P:(DE-Juel1)169856$$aMorgenstern, Laura$$b5
000889150 7001_ $$0P:(DE-HGF)0$$aDobrev, Plamen$$b6
000889150 7001_ $$0P:(DE-HGF)0$$aGroenhof, Gerrit$$b7
000889150 7001_ $$0P:(DE-HGF)0$$aKutzner, Carsten$$b8
000889150 7001_ $$0P:(DE-HGF)0$$aHess, Berk$$b9
000889150 7001_ $$0P:(DE-Juel1)132079$$aDachsel, Holger$$b10$$ufzj
000889150 7001_ $$0P:(DE-HGF)0$$aGrubmüller, Helmut$$b11
000889150 8564_ $$uhttps://juser.fz-juelich.de/record/889150/files/978-3-030-47956-5_17.pdf$$yOpenAccess
000889150 909CO $$ooai:juser.fz-juelich.de:889150$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000889150 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157750$$aForschungszentrum Jülich$$b2$$kFZJ
000889150 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132152$$aForschungszentrum Jülich$$b3$$kFZJ
000889150 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161429$$aForschungszentrum Jülich$$b4$$kFZJ
000889150 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169856$$aForschungszentrum Jülich$$b5$$kFZJ
000889150 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132079$$aForschungszentrum Jülich$$b10$$kFZJ
000889150 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000889150 9141_ $$y2020
000889150 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889150 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000889150 920__ $$lyes
000889150 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000889150 9201_ $$0I:(DE-Juel1)IAS-7-20180321$$kIAS-7$$lZivile Sicherheitsforschung$$x1
000889150 980__ $$acontb
000889150 980__ $$aVDB
000889150 980__ $$aUNRESTRICTED
000889150 980__ $$aI:(DE-Juel1)JSC-20090406
000889150 980__ $$aI:(DE-Juel1)IAS-7-20180321
000889150 9801_ $$aFullTexts