000889152 001__ 889152
000889152 005__ 20210208142325.0
000889152 0247_ $$2doi$$a10.1134/S1027451020030209
000889152 0247_ $$2ISSN$$a1027-4510
000889152 0247_ $$2ISSN$$a1819-7094
000889152 0247_ $$2Handle$$a2128/26877
000889152 0247_ $$2WOS$$aWOS:000546783200001
000889152 037__ $$aFZJ-2021-00077
000889152 041__ $$aEnglish
000889152 082__ $$a540
000889152 1001_ $$0P:(DE-HGF)0$$aIashina, E. G.$$b0$$eCorresponding author
000889152 245__ $$aOn the Nature of Defects in Mn1 –xFexGe Compounds Synthesized under High Pressure
000889152 260__ $$aBerlin$$bSpringer Science+Business Media$$c2020
000889152 3367_ $$2DRIVER$$aarticle
000889152 3367_ $$2DataCite$$aOutput Types/Journal article
000889152 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611241337_17161
000889152 3367_ $$2BibTeX$$aARTICLE
000889152 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889152 3367_ $$00$$2EndNote$$aJournal Article
000889152 520__ $$aThe mesostructure of Mn1 – xFex Ge transition-metal monogermanides is studied by small-angle neutron scattering (SANS) and ultra-SANS in a wide concentration range of x = 0.0–1.0.It is shown that the main contribution to the scattering intensity for all concentrations x is made by scattering at crystallites with sharp boundaries and sizes of 1–10 μm, which is described by the squared Lorentzian function. An additional contribution to the scattering intensity as a result of scattering at an ensemble of defects is found as well, which is characteristic of manganese-rich samples. This contribution is well fitted by the power function Q–n with the exponent n = 3. The complementary scattering typical of iron-rich samples is described by an exponential function and also seems to be a part of scattering at sharp-boundary crystallites.
000889152 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x0
000889152 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000889152 536__ $$0G:(DE-HGF)POF3-540$$a540 - Advanced Engineering Materials (POF3-500)$$cPOF3-500$$fPOF III$$x2
000889152 588__ $$aDataset connected to CrossRef
000889152 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
000889152 65017 $$0V:(DE-MLZ)GC-1601-2016$$2V:(DE-HGF)$$aEngineering, Industrial Materials and Processing$$x0
000889152 693__ $$0EXP:(DE-MLZ)KWS3-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS3-20140101$$6EXP:(DE-MLZ)NL3auS-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-3: Very small angle scattering diffractometer with focusing mirror$$fNL3auS$$x0
000889152 693__ $$0EXP:(DE-MLZ)SANS-1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)SANS-1-20140101$$6EXP:(DE-MLZ)NL4a-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eSANS-1: Small angle neutron scattering$$fNL4a$$x1
000889152 7001_ $$0P:(DE-HGF)0$$aAltynbaev, E. V.$$b1
000889152 7001_ $$0P:(DE-HGF)0$$aFomicheva, L. N.$$b2
000889152 7001_ $$0P:(DE-HGF)0$$aTsvyashchenko, A. V.$$b3
000889152 7001_ $$0P:(DE-HGF)0$$aGrigoriev, S. V.$$b4
000889152 773__ $$0PERI:(DE-600)2389417-9$$a10.1134/S1027451020030209$$gVol. 14, no. 3, p. 429 - 433$$n3$$p429 - 433$$tJournal of surface investigation$$v14$$x1819-7094$$y2020
000889152 8564_ $$uhttps://juser.fz-juelich.de/record/889152/files/Iashina2020_Article_OnTheNatureOfDefectsInMn1XFexG.pdf
000889152 8564_ $$uhttps://juser.fz-juelich.de/record/889152/files/last%20draft%20in%20english.pdf$$yOpenAccess
000889152 909CO $$ooai:juser.fz-juelich.de:889152$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000889152 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0
000889152 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000889152 9131_ $$1G:(DE-HGF)POF3-540$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lAdvanced Engineering Materials$$x1
000889152 9141_ $$y2020
000889152 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-06
000889152 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2020-09-06
000889152 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-06
000889152 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2020-09-06$$wger
000889152 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889152 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-06
000889152 920__ $$lyes
000889152 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x0
000889152 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x1
000889152 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
000889152 980__ $$ajournal
000889152 980__ $$aVDB
000889152 980__ $$aUNRESTRICTED
000889152 980__ $$aI:(DE-Juel1)JCNS-4-20201012
000889152 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000889152 980__ $$aI:(DE-588b)4597118-3
000889152 9801_ $$aFullTexts