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Abstract—The mesostructure of Mn1 – xFex Ge transition-metal monogermanides is studied by small-angle
neutron scattering (SANS) and ultra-SANS in a wide concentration range of x = 0.0–1.0.It is shown that the
main contribution to the scattering intensity for all concentrations x is made by scattering at crystallites with
sharp boundaries and sizes of 1–10 μm, which is described by the squared Lorentzian function. An additional
contribution to the scattering intensity as a result of scattering at an ensemble of defects is found as well, which
is characteristic of manganese-rich samples. This contribution is well fitted by the power function Q–n with
the exponent n = 3. The complementary scattering typical of iron-rich samples is described by an exponential
function and also seems to be a part of scattering at sharp-boundary crystallites.
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INTRODUCTION
One of the main problems in condensed matter

physics is searching for correlations between crystal-
structure changes and the material characteristics.
Real solids always contain defects that form the hier-
archical structure which varies upon crystal deforma-
tion. These variations can be classified as plastic defor-
mation and defect accumulation. Defect accumula-
tion includes the nucleation, evolution and interaction
of defects at different scales of structural levels, as well
as the interaction between these levels. The defect
density which increases during the course of deforma-
tion leads to the emergence of collective properties,
such as the establishment of coherent links (correla-
tion) in the defect ensemble, which increases the
energy of a system and thus compels it to aim for a rel-
ative total energy minimum, forming the dislocation
substructures [1]. The establishment of links between
defects at the single structure level causes autolocal-
ized formation which serves as the primary structural
element at a higher level. Chaotic dislocation struc-
tures may lead to tangles, which in turn become ori-
ented cells. There is sometimes a different version of
the cascade transition: disoriented cells – strips – sub-
structure with continuous disorientation. The forma-
tion of dislocation substructures reflects the signs of
the self-organization of dislocation ensembles [2]. The
consequence of establishing the hierarchical subordi-

nation of structural transitions is the fractal structure
of the thermodynamic potential distribution of a dis-
location ensemble in configuration space. The fractal
structure of a system drastically changes its thermody-
namic and kinetic properties. This is due to the divi-
sion of configuration space into a set of domains with
their own statistical ensembles. As a result, the deter-
mination of mean values occurs in two stages: averag-
ing is first implemented over the ensemble of a given
valley and then over an ensemble of valleys. It is con-
venient to represent this process as motion within the
nodes of the hierarchical Cayley tree, associated with
valleys, towards its trunk. Here, the role of time is
assigned to plastic deformation [3, 4].

Besides, the consistent description of ensembles of
defects and accumulated microcracks, including their
spatial organization, is possible only within a fractal
concept. The study of multiscale structures, as well as
the correlation between them, is difficult, but is possi-
ble by small-angle neutron scattering (SANS). SANS
is a universal and effective method for solving such
issues and is commonly used in condensed-matter
physics research areas. Unlike microscopy, techniques
based on neutron scattering give structure information
about the volume of a sample, which makes them
invaluable for studying 3D objects. SANS is one of the
most informative tools for studying the structure of
matter at the superatomic scales (from units of nano-



meters to tens of microns). Because of the electrical
neutrality of neutrons, SANS is a nondestructive and
deeply penetrating characterization method that finds
wide application in different areas: from the structure
of proteins and viruses in biology, medicine and phar-
macology to polymer nanocomposites, emulsions and
microemulsions in chemistry; from magnetic struc-
tures and critical f luctuations at phase transitions in
condensed matter physics to the fractal structures of
granulated materials in materials science and metal-
lurgy, as well as in mineralogy and geology [5–14].

According to the small-angle neutron scattering
concept on a fractal object, the scattering intensity is
expressed as a function of the momentum transfer Q:

(1)

where A is the scattering amplitude,  is the correla-
tion length of a scattering object and the parameter 
describes the fractal properties of the scattering object.
At  = 4, Eq. (1) is a classic case of scattering from
nonfractal 3D inhomogeneities [7, 8], where the scat-
tering object is a biphasic system with randomly dis-
tributed particles of different shape with the average size

 in a homogeneous solution or material. At 4 > n > 3,
Eq. (1) describes scattering from surface fractals form-
ing a particle with a dense nonfractal core surrounded
by a fractal layer (fractal surface). At n → 3, the dense
core size decreases and the core vanishes at n = 3,
transforming the surface fractal into a logarithmic
fractal. Then, at 3 > n > 2, the logarithmic fractal
transforms into a volume fractal, which, according to
classic fractal-geometry vision, corresponds to a self-
similar object with a geometric structure repeatable at
any scales. The Hausdorff dimensionality of the vol-
ume fractal DH equals to the parameter n from Eq. (1),
obtained upon scattering. At n = 2, Eq. (1) is a case of
scattering at 2D non-fractal objects, or f lat particles
with the average size 

Here, we present the results of studies of the meso-
structure of the Mn1 – xFexGe compounds grown
under high pressure and temperature by SANS and
ultra-SANS methods. It is worth mentioning that,
besides structural interest to crystals produced under
extreme conditions, attention is also paid to the
unique magnetic properties of transition-metal mono-
germanides with B20 crystallographic structure [11–
15]. The helicoidal magnetic order in these com-
pounds is due to the coexistence of strong ferromag-
netic interaction and antisymmetric Dzyaloshinskii-
Moriya interaction (the Bak–Jensen model [16]),
caused by inversion-symmetry violation at atomic
positions in the crystal. The spin spiral period varies in
them as a function of the transition-metal concentra-
tion from tens to hundreds of nanometers [17].
Although the Bak–Jensen model well describes the
magnetic properties of FeGe-based compounds [11,
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18], the ab initio calculations of the MnGe magnetic
structure [19, 20] is clearly contrary to the experimen-
tal data and thus does not confirm the applicability of
the Bak-Jensen model for this type of compounds.

Previously [10], the Mn1 – xCoxGe compound
mesostructure was studied by small-angle neutron
scattering in a wide concentration range (x = 0.0–
0.95). The scattering intensity I(Q), obtained for the
whole series of samples in the momentum transfer
range of 6 × 10–2 nm–1 < Q < 2.5 nm–1, are described
by a power function Q–n with the exponent of n =
2.99 ± 0.02, which gives information on the fractal
properties of the sample. This dependence indicates
that the ensemble of defects dominant in the super-
atomic structure is described by the logarithmic spa-
tial correlation function. It is interesting to note that
such defects are missing in the isostructural com-
pound FeGe, meaning that the experimental intensity
is well fitted by function Q–n with the exponent n =
4.1 ± 0.1. It means that crystallites have a uniform
density distribution and a sharp boundary characteriz-
ing the surface. As assumed, at ambient pressure,
defects in Mn1 – xCoxGe compounds form a logarithmic
fractal structure corresponding to a special type of self-
similarity with an additive, but not multiplicative (as in
the case of a volume fractal [5, 10]) law of scaling.

This work aims at investigating a series of Mn1 – xFexGe
solid solutions synthesized under pressure by the
SANS in the wide momentum transfer range of 10–4–
10–1 Å–1 in order to track the evolution of the mor-
phology of inhomogeneities and defects with varying
concentration x. It is shown that, at all concentrations
x, the main contribution to the scattering intensity of
Mn1 – xFexGe systems is made by crystals with sharp
boundaries and sizes of 1–10 μm, which is described
by the power function I ∼ Q–n with the exponent of
n = 4. Moreover, one can distinguish the contribution
made by defect ensembles, which is characterized by
the power function Q–n with the exponent of n = 3 and
associated with a logarithmic spatial correlation func-
tion of defects. This scattering is typical for Mn-rich
compounds.

SAMPLES AND SYNTHESIS METHODS
Mn1 – xFexGe quasi-binary solid solution com-

pounds (x = 1.0–0.0, with a step of 0.1) with B20 cubic
structure were produced at a pressure of 8 GPa. The
high pressure was generated using toroidal cells [21].
Because of the strong differences between the phase
diagrams of MnGe and FeGe, [22–24], each of the
compounds was synthesized at various temperatures.
High temperatures were achieved by indirect heating
by means of a NaCl tubular heater with a protective
container and a mixture of the initial components
inside. The mixture was melted by passing a current
through it at a fixed power of melting. After that, the
blend was cooled to room temperature with crystalli-



 

Fig. 1. Scattering intensity as a function of the momentum
transfer for Mn1 – xFexGe samples (x = 1, 0.8, 0.7, 0.6, 0.5,
0.25, 0.2, 0.1, 0) (open symbols) and relevant approximat-
ing curves (gray line) described by Eq. (1).

10–17

10–14

10–11

10–8

10–5

10–2

101

104

107
Mn1 – xFexGe

x = 1−0

10–4 10–3 10–2

Q, A–1
10–1

I,
 a

rb
. u

ni
ts
zation of the samples. Finally, the samples were
exposed to room-temperature X-ray diffraction
(XRD) analysis in order to determine their phase com-
positions. The synthesis parameters were chosen in
accordance with the XRD data by changing the heater
power at the same pressure and composition. Synthe-
sis under various conditions was carried out until the
XRD results revealed a high impurity content in the
sample. Therefore, each compound was exposed to a
selected temperature mode to obtain the maximum
B20 phase concentration in it. Producing transition-
metal monogermanides is a complex task and requires
various steps: the synthesis of a sample with a predom-
inant (about 99%)phase content with B20 cubic struc-
ture takes 3–5 processing stages.

SMALL-ANGLE NEUTRON SCATTERING 
EXPERIMENTS FROM Mn1–xFexGe SAMPLES

SANS experiments were carried out on the SANS-1
instrument at the MLZ (Garching, Germany). Mea-
surements were performed at a neutron wavelength of
λ = 6 Å at three detector-sample distances (2.2, 8, and
20 m) and a neutron wavelength of λ = 12 Å at a detec-
tor-sample distance of 20 m. The ultra-SANS experi-
ments were carried out on the KWS-3 instrument at
the MLZ at a neutron wavelength of λ = 12 Å and a
detector-sample distance of 10m; the neutron beam
was focused by a unique toroidal mirror. The measure-
ments were carried out at room temperature in zero
magnetic field on powder Mn1 – xFexGe samples (x =
1, 0.8, 0.7, 0.6, 0.5, 0.25, 0.2, 0.1, and 0) placed
between two zirconium glasses so that the powder-
layer thickness was 0.1 mm. Since the scattering is iso-
tropic, the 2D intensity maps were averaged over the
angular component and the 1D scattering intensities
were analyzed as a function of the momentum transfer.
Figure 1 shows the scattering intensities on a double
logarithmic scale for the whole series of Mn1 – xFexGe
samples. The experimental data are the combined
results of SANS and ultra-SANS measurements in the
wide momentum transfer range.

Data processing reveals that the scattering intensity
is composed of three contributions. The first has to be
attributed to scattering at crystallites with a character-
istic length  which have a sharp nonfractal boundary.
It can be presented by a squared Lorentz function:

(2)

where A is the scattering amplitude and  is the cor-
relation length of the scattering object. This contribu-
tion is the most significant at all concentrations x. It is
worth mentioning that the asymptotic of Eq. (2) at

 is the power function  with the expo-
nent of  which was previously used for the
description of scattering at FeGe mesostructure in the

,ξ

( )( )1 22
,

1

AI
Q

=
+ ξ

ξ

1Q ξ !
–

1
nI Q∼

4,n =
momentum transfer range of 5 × 10–3–2 × 10–2 Å–1 [10].
The experimental scattering intensities from Mn1 – xFexGe
compounds were fitted by curves defined by Eq. (2).
The parameter  as a function of the concentration x is
shown in Fig. 2. It should be noted that, in this case,
the true value of the parameter  is distorted because a
direct neutron beam can overlap ultra-small scattering
angles. Meanwhile, one can confirm that in all sam-
ples of the studied series the crystallite sizes vary from
one to several microns.

It should be noted that Eq. (2) does not perfectly
describe the experimental data presented in Fig. 1.
The additional contribution to the scattering intensity
for Mn1 – xFexGe mesostructure can be distinguished
by subtracting the relevant approximating curve
defined by Eq. (2) from the experimental dependence.
The difference curves are given in Figs. 3 and 4.

As seen, the difference curve for Mn0.2Fe0.8Ge
sample is well described by the sum of two more con-
tributions that are the exponential function in the
momentum transfer range of 10–3–10–2 Å–1 and the
cubic function in the momentum transfer range of 10–2–
10–1 Å–1 (Fig. 3). The range limits vary for different
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Fig. 2. Parameter  as a function of the concentration x in
Mn1 – xFexGe samples.
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Fig. 3. Difference curve for the Mn0.2Fe0.8Ge sample
(open symbols) and relevant approximating curve
obtained using Eq. (5) (gray line), which is a sum of the
cubic function 1, the exponential function 2 and the con-
stant describing the background 3.
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Fig. 4. Difference curve for the MnGe sample (open sym-
bols) and relevant approximating curve obtained using
Eq. (6) (gray line), which is a sum of the cubic function
taking into account the finite size of scatterer Eq. (6) 1 and
a constant describing the background 2.
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values x (see Fig. 4). At higher iron concentrations
there is the dominance of the contribution presented
by the exponential function

(3)
whereas, at larger manganese contents, the main con-
tribution is made by scattering obeying the cubic law:

(4)
The difference curve for the Mn0.2Fe0.8Ge sample

in Fig. 4 is fitted by the sum of these two functions:

(5)

The smaller the iron concentration, the stronger
the cubic contribution in the scattering intensity
(Eq. (4)), which reaches a maximum for MnGe
(Fig.4). In this case, the cubic contribution to scatter-
ing dominates the exponential contribution so much
that it is possible to determine the correlation length of
the scattering object. Then, the third contribution has
to be described by a power function taking into
account the finite size of a scatterer:

(6)

Besides, a weak exponential contribution (3) in the
momentum transfer range below 2 × 10–3 Å–1 is
observed. Exponential contribution is perhaps due to
crystallites whose shape also impacts the scattering
and slightly distorts the squared Lorentz function
(Eq. (2)). Therefore, considering that, first, the char-
acteristic contributions described by Eqs. (2) and (3)
are close to each other and, second, the form factors
have the same physical meaning (the abrupt inhomo-
geneity boundary), it can be concluded that these con-
tributions come from a single scattering source.

Thus, the analysis of the scattering intensity from
Mn1 – xFexGe quasi-binary solid solution compounds
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indicates that scattering mainly occurs at crystallites
with a sharp nonfractal boundary and sizes of several
microns. Moreover, crystallites have a defect struc-
ture, and scattering from it is described by the cubic
law in reciprocal space, which corresponds the loga-
rithmic fractal structure of defects ensemble [5, 9, 10].
The amplitude of cubic contribution increases as the
manganese content increases. In the case of pure
MnGe, in addition to the fractal organization of the
defects ensemble, the correlation length is found to be
ζ = 210 ± 10 Å–1.



 

CONCLUSIONS
A Mn1 – xFexGe transition-metal monogermanide

mesostructure at concentrations of x = 1.0–0.0 was
studied by small-angle neutron scattering in the
momentum transfer range of [2 × 10–4–2 × 10–1] Å–1.
Scattering of two types was found. Scattering from
crystallites is characterized by the sum of the squared
Lorentz function and a exponential function whereas
scattering from the ensemble of defects is described by a
cubic law. We mention that the law Q–3is also typical of
scattering from defects that are present in Mn1 – xFexGe
compounds [10]. It is apparent that the logarithmic
fractal structure is characteristic of an ensemble of
defects arising in the course of the cooling of crystals
stabilized under high pressure.
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