000889159 001__ 889159
000889159 005__ 20210304134017.0
000889159 0247_ $$2doi$$a10.1002/vzj2.20068
000889159 0247_ $$2Handle$$a2128/26693
000889159 0247_ $$2altmetric$$aaltmetric:91352298
000889159 0247_ $$2WOS$$aWOS:000618773300062
000889159 037__ $$aFZJ-2021-00082
000889159 082__ $$a550
000889159 1001_ $$00000-0001-5547-6442$$aRahmati, Mehdi$$b0
000889159 245__ $$aSoil hydraulic properties estimation from one‐dimensional infiltration experiments using characteristic time concept
000889159 260__ $$aHoboken, NJ$$bWiley$$c2020
000889159 3367_ $$2DRIVER$$aarticle
000889159 3367_ $$2DataCite$$aOutput Types/Journal article
000889159 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1610269936_17469
000889159 3367_ $$2BibTeX$$aARTICLE
000889159 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889159 3367_ $$00$$2EndNote$$aJournal Article
000889159 520__ $$aMany different equations ranging from simple empirical to semi‐analytical solutions of the Richards equation have been proposed for quantitative description of water infiltration into variably saturated soils. The sorptivity, S, and the saturated hydraulic conductivity, Ks, in these equations are typically unknown and have to be estimated from measured data. In this paper, we use so‐called characteristic time (tchar) to design a new method, referred to as the characteristic time method (CTM) that estimates S, and Ks, from one‐dimensional (1D) cumulative infiltration data. We demonstrate the usefulness and power of the CTM by comparing it with a suite of existing methods using synthetic cumulative infiltration data simulated by HYDRUS‐1D for 12 synthetic soils reflecting different USDA textural classes, as well as experimental data selected from the Soil Water Infiltration Global (SWIG) database. Results demonstrate that the inferred values of S and Ks are in excellent agreement with their theoretical values used in the synthetically simulated infiltration experiments with Nash–Sutcliffe criterion close to unity and RMSE values of 0.04 cm h−1/2 and 0.05 cm h−1, respectively. The CTM also showed very high accuracy when applied on synthetic data with added measurement noise, as well as robustness when applied to experimental data. Unlike previously published methods, the CTM does not require knowledge of the time validity of the applied semi‐analytical solution for infiltration and, therefore, is applicable to infiltrations with durations from 5 min to several days. A script written in Python of the CTM method is provided in the supplemental material.
000889159 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000889159 588__ $$aDataset connected to CrossRef
000889159 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, Jan$$b1
000889159 7001_ $$0P:(DE-HGF)0$$aŠimůnek, Jirka$$b2
000889159 7001_ $$0P:(DE-HGF)0$$aVrugt, Jasper A.$$b3
000889159 7001_ $$0P:(DE-HGF)0$$aMoret‐Fernández, David$$b4
000889159 7001_ $$0P:(DE-HGF)0$$aLatorre, Borja$$b5
000889159 7001_ $$00000-0002-8625-5455$$aLassabatere, Laurent$$b6
000889159 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b7$$eCorresponding author
000889159 773__ $$0PERI:(DE-600)2088189-7$$a10.1002/vzj2.20068$$gVol. 19, no. 1$$n1$$pe20068$$tVadose zone journal$$v19$$x1539-1663$$y2020
000889159 8564_ $$uhttps://juser.fz-juelich.de/record/889159/files/vzj2.20068.pdf$$yOpenAccess
000889159 909CO $$ooai:juser.fz-juelich.de:889159$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000889159 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129548$$aForschungszentrum Jülich$$b1$$kFZJ
000889159 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b7$$kFZJ
000889159 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000889159 9141_ $$y2020
000889159 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-28
000889159 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-28
000889159 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000889159 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bVADOSE ZONE J : 2018$$d2020-08-28
000889159 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-08-28$$wger
000889159 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-28
000889159 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-28
000889159 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-28
000889159 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-28
000889159 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-28
000889159 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-28
000889159 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889159 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-08-28
000889159 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-28
000889159 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-08-28
000889159 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-28
000889159 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-28
000889159 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000889159 9801_ $$aFullTexts
000889159 980__ $$ajournal
000889159 980__ $$aVDB
000889159 980__ $$aUNRESTRICTED
000889159 980__ $$aI:(DE-Juel1)IBG-3-20101118