001     889159
005     20210304134017.0
024 7 _ |a 10.1002/vzj2.20068
|2 doi
024 7 _ |a 2128/26693
|2 Handle
024 7 _ |a altmetric:91352298
|2 altmetric
024 7 _ |a WOS:000618773300062
|2 WOS
037 _ _ |a FZJ-2021-00082
082 _ _ |a 550
100 1 _ |a Rahmati, Mehdi
|0 0000-0001-5547-6442
|b 0
245 _ _ |a Soil hydraulic properties estimation from one‐dimensional infiltration experiments using characteristic time concept
260 _ _ |a Hoboken, NJ
|c 2020
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1610269936_17469
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Many different equations ranging from simple empirical to semi‐analytical solutions of the Richards equation have been proposed for quantitative description of water infiltration into variably saturated soils. The sorptivity, S, and the saturated hydraulic conductivity, Ks, in these equations are typically unknown and have to be estimated from measured data. In this paper, we use so‐called characteristic time (tchar) to design a new method, referred to as the characteristic time method (CTM) that estimates S, and Ks, from one‐dimensional (1D) cumulative infiltration data. We demonstrate the usefulness and power of the CTM by comparing it with a suite of existing methods using synthetic cumulative infiltration data simulated by HYDRUS‐1D for 12 synthetic soils reflecting different USDA textural classes, as well as experimental data selected from the Soil Water Infiltration Global (SWIG) database. Results demonstrate that the inferred values of S and Ks are in excellent agreement with their theoretical values used in the synthetically simulated infiltration experiments with Nash–Sutcliffe criterion close to unity and RMSE values of 0.04 cm h−1/2 and 0.05 cm h−1, respectively. The CTM also showed very high accuracy when applied on synthetic data with added measurement noise, as well as robustness when applied to experimental data. Unlike previously published methods, the CTM does not require knowledge of the time validity of the applied semi‐analytical solution for infiltration and, therefore, is applicable to infiltrations with durations from 5 min to several days. A script written in Python of the CTM method is provided in the supplemental material.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Vanderborght, Jan
|0 P:(DE-Juel1)129548
|b 1
700 1 _ |a Šimůnek, Jirka
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Vrugt, Jasper A.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Moret‐Fernández, David
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Latorre, Borja
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Lassabatere, Laurent
|0 0000-0002-8625-5455
|b 6
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 7
|e Corresponding author
773 _ _ |a 10.1002/vzj2.20068
|g Vol. 19, no. 1
|0 PERI:(DE-600)2088189-7
|n 1
|p e20068
|t Vadose zone journal
|v 19
|y 2020
|x 1539-1663
856 4 _ |u https://juser.fz-juelich.de/record/889159/files/vzj2.20068.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:889159
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129549
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-200
|4 G:(DE-HGF)POF
|v Terrestrial Systems: From Observation to Prediction
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b VADOSE ZONE J : 2018
|d 2020-08-28
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-08-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-08-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-28
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-08-28
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-28
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21