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We demonstrate the emergence of an anomalous Hall effect in chiral magnetic textures which is neither
proportional to the net magnetization nor to the well-known emergent magnetic field that is responsible for
the topological Hall effect. Instead, it appears already at linear order in the gradients of the magnetization
texture and exists for one-dimensional magnetic textures such as domain walls and spin spirals. It receives a
natural interpretation in the language of Alain Connes’ noncommutative geometry. We show that this chiral
Hall effect resembles the familiar topological Hall effect in essential properties while its phenomenology is
distinctly different. Our findings make the reinterpretation of experimental data necessary, and offer an
exciting twist in engineering the electrical transport through magnetic skyrmions.
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Topological magnetic solitons such as magnetic sky-
rmions represent a class of particlelike magnetization
textures that could serve as energy-efficient information
bits of the future [1,2]. There are three important milestones
which need to be reached in order to realize this vision, and
which are currently an active field of research: the stabi-
lization of room-temperature solitons [3,4], their determin-
istic control [5,6], and their deterministic readout [7,8].
With regard to the latter, noncollinear magnetic textures
challenge us with broken translational invariance and
variations on mesoscopic length scales. This is why the
interpretation of experimental transport data is often
strongly debated, as has been recently the case for
SrIrO3=SrRuO3 bilayers [9,10]. While this system may
exhibit skyrmionic magnetization textures, the presence of
chiral domain walls and strong spin-orbit coupling (SOC)
adds further complexity [11] and undermines an a priori
gauge field interpretation of the observed topological Hall
effect (THE) [12–14].
The THE has been used as a proxy for the detection of a

skyrmion phase since the early days of skyrmionics [15],
which is still actively pursued [16–19], and various
theoretical approaches have been put forward in order to
generalize upon its gauge-field interpretation. These are
model based extensions of either the gauge-field language
in the nonadiabatic regime [20,21], or on a T-matrix
scattering theory operating in a weak-coupling regime
[22,23]. The only approach that acknowledges the impor-
tance of SOC-induced gauge fields to linear order is that by
Nakabayashi and Tatara [24]. However, previous work on
the orbital magnetization of noncollinear spin textures
suggests that any perturbative description in the SOC
strength is eventually insufficient in a regime where no
preferred spin reference frame exists anymore [25]. Strong

SOC materials such as the above mentioned oxides can fall
into this regime as well. Further, it would be desirable to
have a formalism which can be generalized to an ab initio
description and is not confined to the model level.
In this work, we close this gap and set the foundation for

future progress in the area of electrical transport properties
of isolated topological solitons. We do so by rephrasing its
constitutive equations in the language of noncommutative
geometry [26,27]. This procedure results in a systematic
recipe to incorporate noncollinear magnetism by providing
corrections to the conductivity tensor order by order in the
gradients of the local magnetization texture. In addition, the
transverse components of the conductivity tensor receive
a natural interpretation as nontrivial elements in the cyclic
cohomology class of the noncommutative phase space
geometry [28]. We focus on the first nontrivial transverse
correction in this expansion which we coin chiral Hall
effect (CHE). We argue that the CHE provides an important
contribution to the Hall effect in noncollinear magnets,
which appear in addition to the topological Hall effect.
Central to our approach is the phase space formulation of

quantum mechanics [29,30] and its application to the
nonequilibrium Keldysh formalism [26]. In this approach,
the noncommutative algebra of quantum operators is
translated into the noncommutative ⋆ product

⋆ ≡ exp

�
iℏ
2
ð∂⃖xμ ∂⃗pμ

− ∂⃖pμ
∂⃗xμÞ

�
; ð1Þ

acting on phase space functions via left- and right-acting
derivatives. Here, and in the following discussion, we refer
to the four-position ðxÞμ ≡ ðct;xÞ and momentum ðpÞμ ≡
ðϵ=c;pÞ with respect to the metric signature ð−þþþÞ.
Both x and p can now be regarded as classical,
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commutative numbers. When H denotes the Hamiltonian
and Σ the self-energy on phase space, the Dyson equation
reads

ðϵ −H − ΣÞ⋆G ¼ id; ð2Þ

whose solutions G represent the nonequilibrium Keldysh
Green’s function and encode the physical properties of the
system. By the nature of the ⋆ product, a solution of the
Dyson equation yields a semiclassical expansion with
respect to ℏ with the classical propagator at Oðℏ0Þ
represented by G0 ¼ ðϵ −H − ΣÞ−1. In the following, we
approximate the self-energy Σwith a constant broadening Γ
in the advanced and retarded component ΣA ¼ ðΣRÞ� ¼ iΓ
and the lesser component Σ< ¼ 2ifðϵÞΓ. In the presence of
static and homogeneous external electromagnetic fields, the
⋆ product is modified and takes the form [26]

⋆ ≡ exp

�
iℏ
2
ð∂⃖xμ ∂⃗pμ

− ∂⃖pμ
∂⃗xμ þ qFμν∂⃖pμ ∂⃗pνÞ

�
: ð3Þ

This equation introduces the electromagnetic field tensor
Fμν which follows the usual conventions. In particular,
cF0i ¼ Ei, where c is the speed of light, q ¼ −e denotes
the electric charge, and Ei represents the components of an
applied electric field. Within the semiclassical formalism,
the electric four-current density jμ ≡ ðcρ; jÞ is given by

jμ ≡ e
2
ℑ
Z

dp
ð2πÞdþ1ℏd tr

� ∂
∂pμ

ðGRÞ−1⋆ ;⋆G<

�
; ð4Þ

with dp ¼ dϵdp=c, where f;⋆g indicates the anticommu-
tator with respect to the ⋆ product (ℑ is the imaginary part).
The current fulfills the continuity equation ∂μjμ ¼ 0 (see
the Supplemental Material [31]). We define the net current
density as the average hji≡ V−1T−1 R dxjðxÞ, where
dx ¼ cdtdx, T represents the time interval of measure-
ment, and V the d-dimensional volume of the sample. The
⋆ exponent featuring in Eq. (4) denotes the inverse with
respect to the ⋆ product. The conductivity tensor is then
defined as the derivative σkl ¼ ∂hjki=∂EljE→0. In order to
determine this derivative, we expand G → Gþ GE to find
the first-order correction due to the electric field (see
Supplemental Material [31]):

GE ¼ iℏq
2

ðG⋆∇pG−1
0 ⋆∂ϵG −G⋆∂ϵG−1

0 ⋆∇pGÞ · E; ð5Þ

where the ⋆ product and the Green’s functions are now
evaluated at zero field. The conductivity can then be split
into two contributions σkl ¼ σseakl þ σsurfkl . Employing the
convention

Trð•Þ≡
Z

dp
ð2πÞdþ1ℏd trð•Þ; ð6Þ

we arrive at the deformed Kubo-Bastin formula,

σseakl ¼ ℏe2ℜTrseahGR⋆vk⋆GR⋆vl⋆GR − ðk ↔ lÞi; ð7Þ

σsurfkl ¼ ℏe2ℜTrsurfhvk⋆ðGR −GAÞ⋆vl⋆GAi: ð8Þ

Here,ℜ is the real part and we define Trseað•Þ ¼ Tr½fðϵÞ•�
and Trsurfð•Þ ¼ Tr½f0ðϵÞ•�, where f is the Fermi distribu-
tion. The derivation of these equations heavily relies on
certain algebraic properties of the ⋆ product. In particular
its associativity and the cyclic property of the phase space
trace, TrhA⋆Bi ¼ TrhB⋆Ai, which would not be valid
without the real-space averaging.
We now want to comment on the geometrical interpre-

tation of the anomalous Hall effect for the special case d ¼
2 of two space dimensions. For this, we introduce the
objects θμ ≡ ½G⋆ð∂=∂pμÞðGÞ−1⋆� [32], and by defining

φ2ðθ0; θ1; θ2Þ≡ℜTrseahϵμ0μ1μ2θRμ0⋆θRμ1⋆θRμ2i; ð9Þ

where μ ∈ fϵ; px; pyg, and ϵ is the fully antisymmetric
tensor, we can write the Hall conductivity as

σseaxy ¼ ℏe2

3
ℜφ2ðθ0; θ1; θ2Þ: ð10Þ

In the language of noncommutative geometry [27], φ2

represents a cyclic cocycle, i.e., it represents the cyclic
cohomology class of the electronic system (this is shown
explicitly in the Supplemental Material [31]; see also
Ref. [33] for an introduction to the subject). It can be seen
as a generalization of the Thouless-Kohmoto-Nightingale-
Nijs (TKNN) formula. In fact, for insulators in the semi-
classical limit ℏ → 0, one retains the form of the gener-
alized TKNN formula σseaxy ¼ ðe2=hÞN2 [34,35], where N2

is the Chern character of the electronic system. Also in the
general case, a smooth variation of the Green’s function
δGR will not alter φ2 for insulators at zero temperature, i.e.,
δφ2 ¼ 0. A proof of this statement can be obtained by
generalizing an argument of Ref. [36] (see Supplemental
Material [31]). That it should be quantized can be under-
stood from the considerations in noncommutative Chern-
Simons theory [37]. Symbolically, we will write the Kubo
2-cocycle as

ð11Þ

which puts an emphasis on the cyclic invariance of the trace
operation and on its geometrical origin. Here, the solid lines
represent retarded Green’s functions while the vertices
represent derivatives of the inverse propagator, i.e.,
•
α
≡ ∂pαðGR

0 Þ−1. In order to translate the diagram into an
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equation it is to be read in the clockwise direction. The next-
order correction (the “one-loop” level) can be obtained by
expanding the Green’s functions to first order in the gradi-
ents [26]GR¼GR

0þðiℏ=2ÞΠijGR
0 ∂iðGR

0 Þ−1GR
0∂jðGR

0 Þ−1GR
0 ,

where the tensorΠ encodes the first-order expansion of the⋆
product. For time-independent Hamiltonians, the indices i
and j therefore run over the components of x and p.
Diagrammatically, this correction can be expressed as

ð12Þ

Inserting this first-order expansion into Eq. (11), expanding
the ⋆ products and retaining only first-order contributions in
ℏ leads to the full set of diagrams presented in the
Supplemental Material [31]. All corrections can be incorpo-
rated into a single renormalized (dressed) four-momentum
vertex ᾱ, concisely written as

ð13Þ

Going from the zeroth order to the one-loop corrections then
amounts to the replacement •

α
→ •

ᾱ
in Eq. (11). Since the

renormalized vertex is by construction linear in the gradients
of the magnetization texture, we refer to the resulting first
order approximation to σseaxy as the chiral Hall effect σchexy

(CHE). While the magnetization has even parity, its deriv-
atives will change sign under inversion. The local
Hamiltonian thus needs a broken inversion symmetry to
reveal a finite CHE which is in a qualitative difference to
the THE which can arise even in skyrmions favored
by frustrated interactions in inversion symmetric crystals.
The latter has also a distinctly different scaling behavior
compared to the CHE as it depends on a different number of
gradients (an example can be found in the Supplemental
Material [31]).
Consider a generic time-independent two-band

Hamiltonian of the form H ≡ dμτμ, where μ ∈ f0; 1;
2; 3g, τμ ¼ ðid; τÞ and dμ ¼ ðd0;dÞ in the ðþ − −−Þmetric
convention. τ denotes the vector of Pauli matrices. We
consider H as the phase space version of some quantum
Hamiltonian and therefore, dμ is an arbitrary function of the
phase space coordinates x and p. Defining the four-vector
gμ ¼ ðg0;gÞ≡ ðϵ − d0 þ iΓ;dÞ, the retarded Green’s func-
tion for this Hamiltonian is given by GR

0 ¼ gμτμ=gνgν. With
these conventions, the first order gradient correction can be
obtained via a suitable renormalization of the current vertex
as described above. The renormalized diagram evaluates to

ð14Þ

where we have defined v̄μα ≡ tr•
α
τμ=2. Recalling that the

Berry curvature of a two-level system is given by
Ωij ¼ −d · ð∂id × ∂jdÞ=ð2jdj3Þ, one can interpret the
terms in this equation as originating from its first order
correction. For example, by evaluating the coupling to v̄0ϵ ,
one finds

ð15Þ

The term proportional to v̄0ϵ thus describes a coupling of the
momentum space Berry curvature Ωpxpy to the mixed space
Berry curvatures Ωxipi—a connection which was specu-
lated on before (but not shown to exist) for the chiral orbital
magnetization of isolated skyrmions [25]. The appearance
of a term like this is remarkable, since the semiclassical
dynamics of insulators would be well captured by the
Středa formula with a modified density of states given by
the Pfaffian D ¼ jPfðΩ −ΠÞj=ð2πÞ2 [38–40] and while a
coupling like ΩpxpyΩxipi is not present in the two-dimen-
sional expansion of the Pfaffian, it can emerge from
adiabatic pumping in inhomogenous crystals [41,42].
Finally, we demonstrate the existence of the CHE by

performing an explicit numerical simulation for a spin-
polarized electronic system with spin-orbit interaction.
Namely, we focus our analysis on the two-dimensional
magnetic Rashba model, which is well suited to describe
the effect of SOC in interfacial systems:

H ¼ p2

2m�
eff

þ αRðτ × pÞz þ Δxcτ · n̂ðxÞ; ð16Þ

where m�
eff is the electron’s (effective) mass, αR is the

Rashba spin-orbit coupling constant, andΔxc is the strength
of the local exchange field which mediates the coupling to
the local magnetization texture parameterized by n̂ðxÞ. This
Hamiltonian can therefore be cast into the generic form
H ≡ dμσμ from the previous section with d0 ¼ p2=ð2m�

effÞ
and d ¼ αRez × p − Δxcn̂. In general, the CHE can be
formulated in a tensorial way as

σchexy ½n̂� ¼
1

V

Z
dxðσchexy Þijðn̂Þ∂in̂j; ð17Þ
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where ðσchexy Þijðn̂Þ depends only on the direction of n̂, but
not on its derivatives. In Fig. 1, we present the zero-
temperature directional dependence of this tensor for the
case of ℏαR ¼ 1.41 eVÅ, Δxc ¼ 0.5 eV, Γ ¼ 50 meV,
and m�

eff ¼ 3.81me. The chemical potential was set to
μ ¼ 0 eV. All shapes have an inversion center due to
the local Onsager reciprocity, which dictates
ðσchexy Þijð−n̂Þ ¼ ðσchexy Þijðn̂Þ as the correct behavior under
time reversal and which is proved in the Supplemental
Material [31] (generalizing results from Ref. [43]). Notably,
the angular dependence does not resemble a dominant n2z
behavior in ðσchexy Þxxðn̂Þ and ðσchexy Þyyðn̂Þ as would be
expected for the Berry phase term which was alluded to
above. This means that the Berry curvature contribution to
the CHE is subdominant in this case, and it should therefore
be rather interpreted as a strongly nonadiabatic effect where
an interpretation in terms of emergent magnetic fields is not
applicable anymore. The SOC induced anisotropy of the
CHE tensor is a central ingredient for the observation of a
large effect. One can also imagine that a local frustrated
spin arrangement resulting in a finite scalar spin chirality
can replace SOC in triggering the necessary symmetry
breaking.
It lies in the power of our approach that once the

directional dependence of the CHE tensor is known, it
can be integrated for arbitrary magnetization textures. We
chose to perform a numerical experiment using the spin
dynamics code Spirit [44], and perform a hysteresis loop
experiment for a Heisenberg magnet with ferromagnetic
nearest neighbor exchange J ¼ 1 meV, Néel type
Dzyaloshinskii-Moriya interaction (DMI) D ¼ 0.5 meV
and spin moment μs ¼ 2μB at a temperature of T ¼ 1 K.
This system stabilizes Néel skyrmions in between 2 and 3 T
(for further details we refer to the Supplemental Material
[31]) [45]. This kind of hysteresis experiment is commonly
conducted in materials where skyrmions are so small that
optical techniques are not available for their detection.

Instead, the presence of skyrmions is inferred from an
additional feature in the anomalous Hall signal which is
commonly attributed to the topological Hall effect.
The results of this numerical experiment, presented in

Fig. 2(a), demonstrate the emergence of the chiral Hall
effect in the switching process and its correlation with the
buildup of the topological charge. However, unlike the
topological Hall effect it is not caused by this charge. This
becomes evident when we look closer at the field strength
of H ¼ 0.57 T, at which local conical phases appear in the
sample. Remarkably, the CHE shows a very large magni-
tude in the areas that exhibit conical spin spirals [see the
inset of Fig. 2(b) of the main text, and Fig. 3 in the
Supplemental Material [31]), while the topological charge
is still zero in this case. Within the field regime where
magnetic skyrmions are stabilized, the CHE shows a
nontrivial behavior, and manifests itself in ringlike textures
in the local current density, see the inset of Fig. 2(c).
Overall, our findings call for a reinterpretation of

common transport experiments in chiral magnets. In the

FIG. 1. Angular dependence of the chiral Hall effect in the
Rashba model. The shown matrix represents the normalized
angular magnetization dependence of the components of the CHE
which couple to the real-space derivatives ∂in̂j, where i ∈ fx; yg
is the row index and j ∈ fx; y; zg is the column index of the
figure (ℏαR ¼ 1.41 eVÅ, Δxc ¼ 0.5 eV, μ ¼ 0, Γ ¼ 50 meV,
m�

eff ¼ 3.81me). All shapes have an inversion center resulting
from Onsager reciprocity.

FIG. 2. Chiral Hall effect in a chiral Heisenberg magnet. A 2D
system of side-length L containing 100 × 100 spins is simulated
at T ¼ 1 K using the Spirit code. Starting from the polarized state
at Hz ¼ −4T, the magnetic field is increased step by step. (a) At
Hz ¼ 0.57 T the magnetization starts to switch. Shown is the
density of the CHE which displays strong resonances at local
conical phases which have no topological charge. (b) At
Hz ¼ 2.53 T, the system is dominated by magnetic skyrmions
which exhibit a ring-like CHE signature. (c) Tracing the evolution
of the average CHE and the topological charge Q one finds a
correlated signal (the corresponding magnetic state is shown in
the inset below). Yet, by its nature, the CHE is not caused by Q.
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past, these mostly relied on phenomenological arguments
based on the adiabatic theory of the topological Hall effect,
which is already known to be insufficient in many cases
[20–23]. Our formalism represents the first systematic
derivation of corrections to the anomalous Hall effect of
collinear magnets, which are in principle not restricted to
the model level or the weak-coupling regime, and which
can be certainly reformulated in the language of ab initio
electonic structure.
We believe that the CHE will provide an essential degree

of freedom in engineering the electrical transport through
magnetic skyrmions and noncollinear magnetic textures in
general. This is emphasized by the fact that according to
our analysis the nonvanishing CHE emerges already for
one-dimensional spin textures such as spin spirals and
domain walls. In materials with pronounced spin-orbit
interaction the CHE can be a significant contribution to
the overall Hall signal. This might be the case, for example,
in the aforementioned SrIrO3=SrRuO3 bilayers or the
celebrated B20-compound MnSi, where scattering off
the cone phase has been speculated to lead to a Hall effect
before [46] as well as in metal-insulator heterostructures
which display THE-like features [17]. But also in anti-
ferromagnetic systems of, e.g., the Mn3X family, which
exhibit the “topological” Hall effect, an investigation of the
CHE can be of great interest [47,48].
Importantly, we have embedded the approach to the CHE

into the rich context of noncommutative geometry which
lends itself to a deep interpretation. This connection is
fruitful for two reasons. First, its language might shed some
light on how superlattices of magnetic skyrmions can
induce topological states in magnetic insulators as they
change the topology of the underlying noncommutative
phase space. Second, electronic transport in noncollinear
magnets on its own represents an experimentally well-
established field, where theoretical ideas from noncommu-
tative geometry and noncommutative Chern-Simons theory
could be put under scrutiny, while they remain rather
elusive in the context of high-energy physics where they
have been studied intensively 20 years ago [49–51].
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