000889165 001__ 889165
000889165 005__ 20240712100828.0
000889165 0247_ $$2doi$$a10.5194/acp-20-8989-2020
000889165 0247_ $$2ISSN$$a1680-7316
000889165 0247_ $$2ISSN$$a1680-7324
000889165 0247_ $$2Handle$$a2128/26750
000889165 0247_ $$2altmetric$$aaltmetric:86726917
000889165 0247_ $$2WOS$$aWOS:000557791000004
000889165 037__ $$aFZJ-2021-00088
000889165 082__ $$a550
000889165 1001_ $$00000-0001-6551-7017$$aWright, Jonathon S.$$b0$$eCorresponding author
000889165 245__ $$aDifferences in tropical high clouds among reanalyses: origins and radiative impacts
000889165 260__ $$aKatlenburg-Lindau$$bEGU$$c2020
000889165 3367_ $$2DRIVER$$aarticle
000889165 3367_ $$2DataCite$$aOutput Types/Journal article
000889165 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1610475553_22697
000889165 3367_ $$2BibTeX$$aARTICLE
000889165 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889165 3367_ $$00$$2EndNote$$aJournal Article
000889165 520__ $$aWe examine differences among reanalysis high-cloud products in the tropics, assess the impacts of these differences on radiation budgets at the top of the atmosphere and within the tropical upper troposphere and lower stratosphere (UTLS), and discuss their possible origins in the context of the reanalysis models. We focus on the ERA5 (fifth-generation European Centre for Medium-range Weather Forecasts – ECMWF – reanalysis), ERA-Interim (ECMWF Interim Reanalysis), JRA-55 (Japanese 55-year Reanalysis), MERRA-2 (Modern-Era Retrospective Analysis for Research and Applications, Version 2), and CFSR/CFSv2 (Climate Forecast System Reanalysis/Climate Forecast System Version 2) reanalyses. As a general rule, JRA-55 produces the smallest tropical high-cloud fractions and cloud water contents among the reanalyses, while MERRA-2 produces the largest. Accordingly, long-wave cloud radiative effects are relatively weak in JRA-55 and relatively strong in MERRA-2. Only MERRA-2 and ERA5 among the reanalyses produce tropical-mean values of outgoing long-wave radiation (OLR) close to those observed, but ERA5 tends to underestimate cloud effects, while MERRA-2 tends to overestimate variability. ERA5 also produces distributions of long-wave, short-wave, and total cloud radiative effects at the top of the atmosphere that are very consistent with those observed. The other reanalyses all exhibit substantial biases in at least one of these metrics, although compensation between the long-wave and short-wave effects helps to constrain biases in the total cloud radiative effect for most reanalyses. The vertical distribution of cloud water content emerges as a key difference between ERA-Interim and other reanalyses. Whereas ERA-Interim shows a monotonic decrease of cloud water content with increasing height, the other reanalyses all produce distinct anvil layers. The latter is in better agreement with observations and yields very different profiles of radiative heating in the UTLS. For example, whereas the altitude of the level of zero net radiative heating tends to be lower in convective regions than in the rest of the tropics in ERA-Interim, the opposite is true for the other four reanalyses. Differences in cloud water content also help to explain systematic differences in radiative heating in the tropical lower stratosphere among the reanalyses. We discuss several ways in which aspects of the cloud and convection schemes impact the tropical environment. Discrepancies in the vertical profiles of temperature and specific humidity in convective regions are particularly noteworthy, as these variables are directly constrained by data assimilation, are widely used, and feed back to convective behaviour through their relationships with thermodynamic stability.
000889165 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000889165 536__ $$0G:(GEPRIS)392169209$$aDFG project 392169209 - Klimavariabilität in der oberen Troposphäre und Stratosphäre über Asien und ihre Darstellung in modernen Re-Analysen $$c392169209$$x1
000889165 588__ $$aDataset connected to CrossRef
000889165 7001_ $$0P:(DE-HGF)0$$aSun, Xiaoyi$$b1
000889165 7001_ $$0P:(DE-Juel1)129130$$aKonopka, Paul$$b2$$ufzj
000889165 7001_ $$00000-0002-0636-9488$$aKrüger, Kirstin$$b3
000889165 7001_ $$00000-0002-3756-7794$$aLegras, Bernard$$b4
000889165 7001_ $$0P:(DE-HGF)0$$aMolod, Andrea M.$$b5
000889165 7001_ $$0P:(DE-HGF)0$$aTegtmeier, Susann$$b6
000889165 7001_ $$0P:(DE-HGF)0$$aZhang, Guang J.$$b7
000889165 7001_ $$0P:(DE-Juel1)173746$$aZhao, Xin$$b8$$ufzj
000889165 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-20-8989-2020$$gVol. 20, no. 14, p. 8989 - 9030$$n14$$p8989 - 9030$$tAtmospheric chemistry and physics$$v20$$x1680-7324$$y2020
000889165 8564_ $$uhttps://juser.fz-juelich.de/record/889165/files/Wright_2020_acp.pdf$$yOpenAccess
000889165 909CO $$ooai:juser.fz-juelich.de:889165$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000889165 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129130$$aForschungszentrum Jülich$$b2$$kFZJ
000889165 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173746$$aForschungszentrum Jülich$$b8$$kFZJ
000889165 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000889165 9141_ $$y2020
000889165 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-03
000889165 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-03
000889165 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000889165 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2018$$d2020-09-03
000889165 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2018$$d2020-09-03
000889165 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-03
000889165 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-03
000889165 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-03
000889165 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-03
000889165 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-03
000889165 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889165 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-09-03
000889165 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-03
000889165 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-03
000889165 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-03
000889165 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-03
000889165 920__ $$lyes
000889165 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000889165 9801_ $$aFullTexts
000889165 980__ $$ajournal
000889165 980__ $$aVDB
000889165 980__ $$aUNRESTRICTED
000889165 980__ $$aI:(DE-Juel1)IEK-7-20101013
000889165 981__ $$aI:(DE-Juel1)ICE-4-20101013