000889169 001__ 889169
000889169 005__ 20240712084500.0
000889169 0247_ $$2doi$$a10.1103/PhysRevApplied.14.014046
000889169 0247_ $$2ISSN$$a2331-7019
000889169 0247_ $$2ISSN$$a2331-7043
000889169 0247_ $$2Handle$$a2128/26698
000889169 0247_ $$2altmetric$$aaltmetric:86008561
000889169 0247_ $$2WOS$$aWOS:000550210500005
000889169 037__ $$aFZJ-2021-00092
000889169 082__ $$a530
000889169 1001_ $$0P:(DE-Juel1)130285$$aRau, Uwe$$b0$$eCorresponding author$$ufzj
000889169 245__ $$aLuminescence Analysis of Charge-Carrier Separation and Internal Series-Resistance Losses in Cu ( In , Ga ) Se 2 Solar Cells
000889169 260__ $$aCollege Park, Md. [u.a.]$$bAmerican Physical Society$$c2020
000889169 3367_ $$2DRIVER$$aarticle
000889169 3367_ $$2DataCite$$aOutput Types/Journal article
000889169 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1610278448_17469
000889169 3367_ $$2BibTeX$$aARTICLE
000889169 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889169 3367_ $$00$$2EndNote$$aJournal Article
000889169 520__ $$aCu(In,Ga)Se2 solar cells are investigated by luminescence measurements. We construct the current vs. internal voltage characteristics of these devices from the luminescence intensity at different voltage and light bias conditions. A comparison of these characteristics to electrically measured current vs. voltage curves unveils an internal resistance loss that is strongly dependent on voltage bias and illumination. Especially, we find significant residual luminescence for the device under short circuit conditions. Numerical device simulations reveal that this effect is caused by a drop of the electron Quasi-Fermi-level within the space charge region of the absorber material. We use a modified equivalent circuit model to describe the observed behavior in terms of simple equations. We show that such a voltage dependent series resistance leads to a violation of a linear network theorem which under standard circumstances provides a useful method for the determination of the photocurrent collection efficiency. An analysis of resistive and recombination losses in the devices demonstrates that the internal voltage dependent series resistance causes an efficiency loss of about 1.3 % (absolute) for a device with an efficiency 13.4 %. Finally, we show that the observed behavior is general feature of charge carrier separation in solar cells with finite charge carrier mobility and that the intensity of the residual sort circuit luminescence provides valuable information on the efficiency of this process.
000889169 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000889169 588__ $$aDataset connected to CrossRef
000889169 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
000889169 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
000889169 7001_ $$0P:(DE-Juel1)159366$$aHuhn, Vito$$b1
000889169 7001_ $$0P:(DE-Juel1)130284$$aPieters, Bart$$b2$$ufzj
000889169 773__ $$0PERI:(DE-600)2760310-6$$a10.1103/PhysRevApplied.14.014046$$gVol. 14, no. 1, p. 014046$$n1$$p014046$$tPhysical review applied$$v14$$x2331-7019$$y2020
000889169 8564_ $$uhttps://juser.fz-juelich.de/record/889169/files/Luminescence%20analysis%20of%20charge%20carrier%20separation%202nd_no%20marks.pdf$$yOpenAccess
000889169 8564_ $$uhttps://juser.fz-juelich.de/record/889169/files/Luminescence%20analysis%20of%20charge%20carrier%20separation%20suppinfo%202nd_no%20marks.pdf$$yOpenAccess
000889169 8564_ $$uhttps://juser.fz-juelich.de/record/889169/files/PhysRevApplied.14.014046.pdf$$yOpenAccess
000889169 909CO $$ooai:juser.fz-juelich.de:889169$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000889169 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130285$$aForschungszentrum Jülich$$b0$$kFZJ
000889169 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130284$$aForschungszentrum Jülich$$b2$$kFZJ
000889169 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000889169 9141_ $$y2020
000889169 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-12
000889169 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-12
000889169 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000889169 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV APPL : 2018$$d2020-09-12
000889169 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-12
000889169 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-12
000889169 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-12
000889169 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889169 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-12
000889169 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-12
000889169 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-12
000889169 920__ $$lyes
000889169 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000889169 9801_ $$aFullTexts
000889169 980__ $$ajournal
000889169 980__ $$aVDB
000889169 980__ $$aUNRESTRICTED
000889169 980__ $$aI:(DE-Juel1)IEK-5-20101013
000889169 981__ $$aI:(DE-Juel1)IMD-3-20101013