Hauptseite > Publikationsdatenbank > Luminescence Analysis of Charge-Carrier Separation and Internal Series-Resistance Losses in Cu ( In , Ga ) Se 2 Solar Cells > print |
001 | 889169 | ||
005 | 20240712084500.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevApplied.14.014046 |2 doi |
024 | 7 | _ | |a 2331-7019 |2 ISSN |
024 | 7 | _ | |a 2331-7043 |2 ISSN |
024 | 7 | _ | |a 2128/26698 |2 Handle |
024 | 7 | _ | |a altmetric:86008561 |2 altmetric |
024 | 7 | _ | |a WOS:000550210500005 |2 WOS |
037 | _ | _ | |a FZJ-2021-00092 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Rau, Uwe |0 P:(DE-Juel1)130285 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a Luminescence Analysis of Charge-Carrier Separation and Internal Series-Resistance Losses in Cu ( In , Ga ) Se 2 Solar Cells |
260 | _ | _ | |a College Park, Md. [u.a.] |c 2020 |b American Physical Society |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1610278448_17469 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Cu(In,Ga)Se2 solar cells are investigated by luminescence measurements. We construct the current vs. internal voltage characteristics of these devices from the luminescence intensity at different voltage and light bias conditions. A comparison of these characteristics to electrically measured current vs. voltage curves unveils an internal resistance loss that is strongly dependent on voltage bias and illumination. Especially, we find significant residual luminescence for the device under short circuit conditions. Numerical device simulations reveal that this effect is caused by a drop of the electron Quasi-Fermi-level within the space charge region of the absorber material. We use a modified equivalent circuit model to describe the observed behavior in terms of simple equations. We show that such a voltage dependent series resistance leads to a violation of a linear network theorem which under standard circumstances provides a useful method for the determination of the photocurrent collection efficiency. An analysis of resistive and recombination losses in the devices demonstrates that the internal voltage dependent series resistance causes an efficiency loss of about 1.3 % (absolute) for a device with an efficiency 13.4 %. Finally, we show that the observed behavior is general feature of charge carrier separation in solar cells with finite charge carrier mobility and that the intensity of the residual sort circuit luminescence provides valuable information on the efficiency of this process. |
536 | _ | _ | |a 121 - Solar cells of the next generation (POF3-121) |0 G:(DE-HGF)POF3-121 |c POF3-121 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
650 | 2 | 7 | |a Materials Science |0 V:(DE-MLZ)SciArea-180 |2 V:(DE-HGF) |x 0 |
650 | 1 | 7 | |a Energy |0 V:(DE-MLZ)GC-110 |2 V:(DE-HGF) |x 0 |
700 | 1 | _ | |a Huhn, Vito |0 P:(DE-Juel1)159366 |b 1 |
700 | 1 | _ | |a Pieters, Bart |0 P:(DE-Juel1)130284 |b 2 |u fzj |
773 | _ | _ | |a 10.1103/PhysRevApplied.14.014046 |g Vol. 14, no. 1, p. 014046 |0 PERI:(DE-600)2760310-6 |n 1 |p 014046 |t Physical review applied |v 14 |y 2020 |x 2331-7019 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/889169/files/Luminescence%20analysis%20of%20charge%20carrier%20separation%202nd_no%20marks.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/889169/files/Luminescence%20analysis%20of%20charge%20carrier%20separation%20suppinfo%202nd_no%20marks.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/889169/files/PhysRevApplied.14.014046.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:889169 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)130285 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)130284 |
913 | 1 | _ | |a DE-HGF |b Energie |l Erneuerbare Energien |1 G:(DE-HGF)POF3-120 |0 G:(DE-HGF)POF3-121 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-100 |4 G:(DE-HGF)POF |v Solar cells of the next generation |x 0 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-09-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-09-12 |
915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV APPL : 2018 |d 2020-09-12 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-09-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-09-12 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2020-09-12 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-09-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-09-12 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-09-12 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-5-20101013 |k IEK-5 |l Photovoltaik |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-5-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IMD-3-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|