001     889169
005     20240712084500.0
024 7 _ |a 10.1103/PhysRevApplied.14.014046
|2 doi
024 7 _ |a 2331-7019
|2 ISSN
024 7 _ |a 2331-7043
|2 ISSN
024 7 _ |a 2128/26698
|2 Handle
024 7 _ |a altmetric:86008561
|2 altmetric
024 7 _ |a WOS:000550210500005
|2 WOS
037 _ _ |a FZJ-2021-00092
082 _ _ |a 530
100 1 _ |a Rau, Uwe
|0 P:(DE-Juel1)130285
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Luminescence Analysis of Charge-Carrier Separation and Internal Series-Resistance Losses in Cu ( In , Ga ) Se 2 Solar Cells
260 _ _ |a College Park, Md. [u.a.]
|c 2020
|b American Physical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1610278448_17469
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Cu(In,Ga)Se2 solar cells are investigated by luminescence measurements. We construct the current vs. internal voltage characteristics of these devices from the luminescence intensity at different voltage and light bias conditions. A comparison of these characteristics to electrically measured current vs. voltage curves unveils an internal resistance loss that is strongly dependent on voltage bias and illumination. Especially, we find significant residual luminescence for the device under short circuit conditions. Numerical device simulations reveal that this effect is caused by a drop of the electron Quasi-Fermi-level within the space charge region of the absorber material. We use a modified equivalent circuit model to describe the observed behavior in terms of simple equations. We show that such a voltage dependent series resistance leads to a violation of a linear network theorem which under standard circumstances provides a useful method for the determination of the photocurrent collection efficiency. An analysis of resistive and recombination losses in the devices demonstrates that the internal voltage dependent series resistance causes an efficiency loss of about 1.3 % (absolute) for a device with an efficiency 13.4 %. Finally, we show that the observed behavior is general feature of charge carrier separation in solar cells with finite charge carrier mobility and that the intensity of the residual sort circuit luminescence provides valuable information on the efficiency of this process.
536 _ _ |a 121 - Solar cells of the next generation (POF3-121)
|0 G:(DE-HGF)POF3-121
|c POF3-121
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Materials Science
|0 V:(DE-MLZ)SciArea-180
|2 V:(DE-HGF)
|x 0
650 1 7 |a Energy
|0 V:(DE-MLZ)GC-110
|2 V:(DE-HGF)
|x 0
700 1 _ |a Huhn, Vito
|0 P:(DE-Juel1)159366
|b 1
700 1 _ |a Pieters, Bart
|0 P:(DE-Juel1)130284
|b 2
|u fzj
773 _ _ |a 10.1103/PhysRevApplied.14.014046
|g Vol. 14, no. 1, p. 014046
|0 PERI:(DE-600)2760310-6
|n 1
|p 014046
|t Physical review applied
|v 14
|y 2020
|x 2331-7019
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/889169/files/Luminescence%20analysis%20of%20charge%20carrier%20separation%202nd_no%20marks.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/889169/files/Luminescence%20analysis%20of%20charge%20carrier%20separation%20suppinfo%202nd_no%20marks.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/889169/files/PhysRevApplied.14.014046.pdf
909 C O |o oai:juser.fz-juelich.de:889169
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130285
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130284
913 1 _ |a DE-HGF
|b Energie
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Solar cells of the next generation
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-12
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV APPL : 2018
|d 2020-09-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-12
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-12
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21