% IMPORTANT: The following is UTF-8 encoded.  This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.

@ARTICLE{Agostini:889173,
      author       = {Agostini, M. and Altenmüller, K. and Appel, S. and
                      Atroshchenko, V. and Bagdasarian, Z. and Basilico, D. and
                      Bellini, G. and Benziger, J. and Bick, D. and Bonfini, G.
                      and Bravo, D. and Caccianiga, B. and Calaprice, F. and
                      Caminata, A. and Cappelli, L. and Cavalcante, P. and
                      Cavanna, F. and Chepurnov, A. and Choi, K. and D’Angelo,
                      D. and Davini, S. and Derbin, A. and Di Giacinto, A. and Di
                      Marcello, V. and Ding, X. F. and Di Ludovico, A. and Di
                      Noto, L. and Drachnev, I. and Formozov, A. and Franco, D.
                      and Gabriele, F. and Galbiati, C. and Gschwender, M. and
                      Ghiano, C. and Giammarchi, M. and Goretti, A. and Gromov, M.
                      and Guffanti, D. and Hagner, C. and Hungerford, E. and
                      Ianni, Aldo and Ianni, Andrea and Jany, A. and Jeschke, D.
                      and Kumaran, Sindhujha and Kobychev, V. and Korga, G. and
                      Lachenmaier, T. and Laubenstein, M. and Litvinovich, E. and
                      Lombardi, P. and Lomskaya, I. and Ludhova, Livia and
                      Lukyanchenko, G. and Lukyanchenko, L. and Machulin, I. and
                      Manuzio, G. and Marcocci, S. and Maricic, J. and Martyn, J.
                      and Meroni, E. and Meyer, M. and Miramonti, L. and
                      Misiaszek, M. and Muratova, V. and Neumair, B. and Nieslony,
                      M. and Oberauer, L. and Orekhov, V. and Ortica, F. and
                      Pallavicini, M. and Papp, L. and Penek, Ö. and
                      Pietrofaccia, L. and Pilipenko, N. and Pocar, A. and Raikov,
                      G. and Ranalli, M. T. and Ranucci, G. and Razeto, A. and Re,
                      A. and Redchuk, Mariia and Ricci, B. and Romani, A. and
                      Rossi, N. and Rottenanger, S. and Schönert, S. and Semenov,
                      D. and Skorokhvatov, M. and Smirnov, O. and Sotnikov, A. and
                      Suvorov, Y. and Tartaglia, R. and Testera, G. and Thurn, J.
                      and Unzhakov, E. and Vishneva, A. and Vogelaar, R. B. and
                      von Feilitzsch, F. and Wojcik, M. and Wurm, M. and
                      Zaimidoroga, O. and Zavatarelli, S. and Zuber, K. and Zuzel,
                      G.},
      title        = {{S}earch for low-energy neutrinos from astrophysical
                      sources with {B}orexino},
      journal      = {Astroparticle physics},
      volume       = {125},
      issn         = {0927-6505},
      address      = {Amsterdam [u.a.]},
      publisher    = {Elsevier Science},
      reportid     = {FZJ-2021-00096},
      pages        = {102509},
      year         = {2021},
      abstract     = {We report on searches for neutrinos and antineutrinos from
                      astrophysical sources performed with the Borexino detector
                      at the Laboratori Nazionali del Gran Sasso in Italy.
                      Electron antineutrinos ($\barν_e$) are detected in an
                      organic liquid scintillator through the inverse β-decay
                      reaction. In the present work we set model-independent upper
                      limits in the energy range 1.8–16.8 MeV on neutrino fluxes
                      from unknown sources that improve our previous results, on
                      average, by a factor 2.5. Using the same data set, we first
                      obtain experimental constraints on the diffuse supernova
                      $\barν_e$ fluxes in the previously unexplored region below
                      8 MeV. A search for $\barν_e$ in the solar neutrino flux is
                      also presented: the presence of $\barν_e$ would be a
                      manifestation of a non-zero anomalous magnetic moment of the
                      neutrino, making possible its conversion to antineutrinos in
                      the strong magnetic field of the Sun. We obtain a limit for
                      a solar $\barν_e$ flux of 384 cm–2 s–1 (90\% C.L.),
                      assuming an undistorted solar $^8B$ neutrinos energy
                      spectrum, that corresponds to a transition probability
                      $p_{ν_e \rightarrow \barν_e}$< 7.2 × 10–5 (90\% C.L.)
                      for $E_{\barν_e}$ > 1.8 MeV. At lower energies, by
                      investigating the spectral shape of elastic scattering
                      events, we obtain a new limit on solar $^7Be-ν_e$
                      conversion into $\barν_e$ of $p_{ν_e \rightarrow
                      \barν_e}$< 0.14 (90\% C.L.) at 0.862 MeV. Last, we
                      investigate solar flares as possible neutrino sources and
                      obtain the strongest up-to-date limits on the fluence of
                      neutrinos of all flavor neutrino below 3–7 MeV. Assuming
                      the neutrino flux to be proportional to the flare’s
                      intensity, we exclude an intense solar flare as the cause of
                      the observed excess of events in run 117 of the Cl-Ar
                      Homestake experiment.},
      cin          = {IKP-2},
      ddc          = {540},
      cid          = {I:(DE-Juel1)IKP-2-20111104},
      pnm          = {612 - Cosmic Matter in the Laboratory (POF4-612)},
      pid          = {G:(DE-HGF)POF4-612},
      typ          = {PUB:(DE-HGF)16},
      UT           = {WOS:000576790400003},
      doi          = {10.1016/j.astropartphys.2020.102509},
      url          = {https://juser.fz-juelich.de/record/889173},
}