001     889173
005     20211209142052.0
024 7 _ |a 10.1016/j.astropartphys.2020.102509
|2 doi
024 7 _ |a 0927-6505
|2 ISSN
024 7 _ |a 1873-2852
|2 ISSN
024 7 _ |a 2128/26712
|2 Handle
024 7 _ |a altmetric:89326595
|2 altmetric
024 7 _ |a WOS:000576790400003
|2 WOS
037 _ _ |a FZJ-2021-00096
082 _ _ |a 540
100 1 _ |a Agostini, M.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Search for low-energy neutrinos from astrophysical sources with Borexino
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1638969998_20054
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We report on searches for neutrinos and antineutrinos from astrophysical sources performed with the Borexino detector at the Laboratori Nazionali del Gran Sasso in Italy. Electron antineutrinos ($\barν_e$) are detected in an organic liquid scintillator through the inverse β-decay reaction. In the present work we set model-independent upper limits in the energy range 1.8–16.8 MeV on neutrino fluxes from unknown sources that improve our previous results, on average, by a factor 2.5. Using the same data set, we first obtain experimental constraints on the diffuse supernova $\barν_e$ fluxes in the previously unexplored region below 8 MeV. A search for $\barν_e$ in the solar neutrino flux is also presented: the presence of $\barν_e$ would be a manifestation of a non-zero anomalous magnetic moment of the neutrino, making possible its conversion to antineutrinos in the strong magnetic field of the Sun. We obtain a limit for a solar $\barν_e$ flux of 384 cm–2 s–1 (90% C.L.), assuming an undistorted solar $^8B$ neutrinos energy spectrum, that corresponds to a transition probability $p_{ν_e \rightarrow \barν_e}$< 7.2 × 10–5 (90% C.L.) for $E_{\barν_e}$ > 1.8 MeV. At lower energies, by investigating the spectral shape of elastic scattering events, we obtain a new limit on solar $^7Be-ν_e$ conversion into $\barν_e$ of $p_{ν_e \rightarrow \barν_e}$< 0.14 (90% C.L.) at 0.862 MeV. Last, we investigate solar flares as possible neutrino sources and obtain the strongest up-to-date limits on the fluence of neutrinos of all flavor neutrino below 3–7 MeV. Assuming the neutrino flux to be proportional to the flare’s intensity, we exclude an intense solar flare as the cause of the observed excess of events in run 117 of the Cl-Ar Homestake experiment.
536 _ _ |a 612 - Cosmic Matter in the Laboratory (POF4-612)
|0 G:(DE-HGF)POF4-612
|c POF4-612
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Particle Physics
|0 V:(DE-MLZ)SciArea-230
|2 V:(DE-HGF)
|x 0
700 1 _ |a Altenmüller, K.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Appel, S.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Atroshchenko, V.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bagdasarian, Z.
|0 P:(DE-Juel1)156420
|b 4
|u fzj
700 1 _ |a Basilico, D.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Bellini, G.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Benziger, J.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Bick, D.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Bonfini, G.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Bravo, D.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Caccianiga, B.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Calaprice, F.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Caminata, A.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Cappelli, L.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Cavalcante, P.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Cavanna, F.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Chepurnov, A.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Choi, K.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a D’Angelo, D.
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Davini, S.
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Derbin, A.
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Di Giacinto, A.
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Di Marcello, V.
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Ding, X. F.
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Di Ludovico, A.
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Di Noto, L.
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Drachnev, I.
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Formozov, A.
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Franco, D.
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Gabriele, F.
|0 P:(DE-HGF)0
|b 30
700 1 _ |a Galbiati, C.
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Gschwender, M.
|0 P:(DE-HGF)0
|b 32
700 1 _ |a Ghiano, C.
|0 P:(DE-HGF)0
|b 33
700 1 _ |a Giammarchi, M.
|0 P:(DE-HGF)0
|b 34
700 1 _ |a Goretti, A.
|0 P:(DE-HGF)0
|b 35
700 1 _ |a Gromov, M.
|0 P:(DE-HGF)0
|b 36
700 1 _ |a Guffanti, D.
|0 P:(DE-HGF)0
|b 37
700 1 _ |a Hagner, C.
|0 P:(DE-HGF)0
|b 38
700 1 _ |a Hungerford, E.
|0 P:(DE-HGF)0
|b 39
700 1 _ |a Ianni, Aldo
|0 P:(DE-HGF)0
|b 40
700 1 _ |a Ianni, Andrea
|0 P:(DE-HGF)0
|b 41
700 1 _ |a Jany, A.
|0 P:(DE-HGF)0
|b 42
700 1 _ |a Jeschke, D.
|0 P:(DE-HGF)0
|b 43
700 1 _ |a Kumaran, Sindhujha
|0 P:(DE-Juel1)173900
|b 44
700 1 _ |a Kobychev, V.
|0 P:(DE-HGF)0
|b 45
700 1 _ |a Korga, G.
|0 P:(DE-HGF)0
|b 46
700 1 _ |a Lachenmaier, T.
|0 P:(DE-HGF)0
|b 47
700 1 _ |a Laubenstein, M.
|0 P:(DE-HGF)0
|b 48
700 1 _ |a Litvinovich, E.
|0 P:(DE-HGF)0
|b 49
700 1 _ |a Lombardi, P.
|0 P:(DE-HGF)0
|b 50
700 1 _ |a Lomskaya, I.
|0 P:(DE-HGF)0
|b 51
700 1 _ |a Ludhova, Livia
|0 P:(DE-Juel1)168122
|b 52
700 1 _ |a Lukyanchenko, G.
|0 P:(DE-HGF)0
|b 53
700 1 _ |a Lukyanchenko, L.
|0 P:(DE-HGF)0
|b 54
700 1 _ |a Machulin, I.
|0 P:(DE-HGF)0
|b 55
700 1 _ |a Manuzio, G.
|0 P:(DE-HGF)0
|b 56
700 1 _ |a Marcocci, S.
|0 P:(DE-HGF)0
|b 57
700 1 _ |a Maricic, J.
|0 P:(DE-HGF)0
|b 58
700 1 _ |a Martyn, J.
|0 P:(DE-HGF)0
|b 59
700 1 _ |a Meroni, E.
|0 P:(DE-HGF)0
|b 60
700 1 _ |a Meyer, M.
|0 P:(DE-HGF)0
|b 61
700 1 _ |a Miramonti, L.
|0 P:(DE-HGF)0
|b 62
700 1 _ |a Misiaszek, M.
|0 P:(DE-HGF)0
|b 63
700 1 _ |a Muratova, V.
|0 P:(DE-HGF)0
|b 64
700 1 _ |a Neumair, B.
|0 P:(DE-HGF)0
|b 65
700 1 _ |a Nieslony, M.
|0 P:(DE-HGF)0
|b 66
700 1 _ |a Oberauer, L.
|0 P:(DE-HGF)0
|b 67
700 1 _ |a Orekhov, V.
|0 P:(DE-HGF)0
|b 68
700 1 _ |a Ortica, F.
|0 P:(DE-HGF)0
|b 69
700 1 _ |a Pallavicini, M.
|0 P:(DE-HGF)0
|b 70
700 1 _ |a Papp, L.
|0 P:(DE-HGF)0
|b 71
700 1 _ |a Penek, Ö.
|0 P:(DE-Juel1)171602
|b 72
|u fzj
700 1 _ |a Pietrofaccia, L.
|0 P:(DE-HGF)0
|b 73
700 1 _ |a Pilipenko, N.
|0 P:(DE-HGF)0
|b 74
700 1 _ |a Pocar, A.
|0 P:(DE-HGF)0
|b 75
700 1 _ |a Raikov, G.
|0 P:(DE-HGF)0
|b 76
700 1 _ |a Ranalli, M. T.
|0 P:(DE-HGF)0
|b 77
700 1 _ |a Ranucci, G.
|0 P:(DE-HGF)0
|b 78
700 1 _ |a Razeto, A.
|0 P:(DE-HGF)0
|b 79
700 1 _ |a Re, A.
|0 P:(DE-HGF)0
|b 80
700 1 _ |a Redchuk, Mariia
|0 P:(DE-Juel1)171322
|b 81
700 1 _ |a Ricci, B.
|0 P:(DE-HGF)0
|b 82
700 1 _ |a Romani, A.
|0 P:(DE-HGF)0
|b 83
700 1 _ |a Rossi, N.
|0 P:(DE-HGF)0
|b 84
700 1 _ |a Rottenanger, S.
|0 P:(DE-HGF)0
|b 85
700 1 _ |a Schönert, S.
|0 P:(DE-HGF)0
|b 86
700 1 _ |a Semenov, D.
|0 P:(DE-HGF)0
|b 87
700 1 _ |a Skorokhvatov, M.
|0 P:(DE-HGF)0
|b 88
700 1 _ |a Smirnov, O.
|0 P:(DE-HGF)0
|b 89
700 1 _ |a Sotnikov, A.
|0 P:(DE-HGF)0
|b 90
700 1 _ |a Suvorov, Y.
|0 P:(DE-HGF)0
|b 91
700 1 _ |a Tartaglia, R.
|0 P:(DE-HGF)0
|b 92
700 1 _ |a Testera, G.
|0 P:(DE-HGF)0
|b 93
700 1 _ |a Thurn, J.
|0 P:(DE-HGF)0
|b 94
700 1 _ |a Unzhakov, E.
|0 P:(DE-HGF)0
|b 95
700 1 _ |a Vishneva, A.
|0 P:(DE-HGF)0
|b 96
700 1 _ |a Vogelaar, R. B.
|0 P:(DE-HGF)0
|b 97
700 1 _ |a von Feilitzsch, F.
|0 P:(DE-HGF)0
|b 98
700 1 _ |a Wojcik, M.
|0 P:(DE-HGF)0
|b 99
700 1 _ |a Wurm, M.
|0 P:(DE-HGF)0
|b 100
700 1 _ |a Zaimidoroga, O.
|0 P:(DE-HGF)0
|b 101
700 1 _ |a Zavatarelli, S.
|0 P:(DE-HGF)0
|b 102
|e Corresponding author
700 1 _ |a Zuber, K.
|0 P:(DE-HGF)0
|b 103
700 1 _ |a Zuzel, G.
|0 P:(DE-HGF)0
|b 104
773 _ _ |a 10.1016/j.astropartphys.2020.102509
|g Vol. 125, p. 102509 -
|0 PERI:(DE-600)1499883-x
|p 102509
|t Astroparticle physics
|v 125
|y 2021
|x 0927-6505
856 4 _ |u https://juser.fz-juelich.de/record/889173/files/1909.02422.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:889173
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)156420
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 44
|6 P:(DE-Juel1)173900
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 44
|6 P:(DE-Juel1)173900
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 52
|6 P:(DE-Juel1)168122
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 52
|6 P:(DE-Juel1)168122
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 72
|6 P:(DE-Juel1)171602
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 81
|6 P:(DE-Juel1)171322
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 81
|6 P:(DE-Juel1)171322
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-612
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Cosmic Matter in the Laboratory
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-10-13
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-10-13
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-10-13
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-10-13
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ASTROPART PHYS : 2018
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-10-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-10-13
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-10-13
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-10-13
920 1 _ |0 I:(DE-Juel1)IKP-2-20111104
|k IKP-2
|l Experimentelle Hadrondynamik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IKP-2-20111104
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21