000889202 001__ 889202
000889202 005__ 20230111074310.0
000889202 0247_ $$2doi$$a10.1016/j.algal.2020.101881
000889202 0247_ $$2Handle$$a2128/30126
000889202 0247_ $$2WOS$$aWOS:000540736500015
000889202 037__ $$aFZJ-2021-00112
000889202 041__ $$aEnglish
000889202 082__ $$a580
000889202 1001_ $$0P:(DE-HGF)0$$aBaránková, Barbora$$b0
000889202 245__ $$aLight absorption and scattering by high light-tolerant, fast-growing Chlorella vulgaris IPPAS C-1 cells
000889202 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2020
000889202 3367_ $$2DRIVER$$aarticle
000889202 3367_ $$2DataCite$$aOutput Types/Journal article
000889202 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1641976105_25186
000889202 3367_ $$2BibTeX$$aARTICLE
000889202 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889202 3367_ $$00$$2EndNote$$aJournal Article
000889202 520__ $$aAlgal cells are highly complex optical systems that can dynamically change their structure. Consequently, absorption and scattering properties of algae change, while the cells are acclimating to different light conditions or during growth and division in a cell cycle. This may be particularly important in algal species that can grow rapidly under very high-light such as Chlorella vulgaris IPPAS C-1 that is studied here. From cell transmittance measured conventionally and using integrating sphere, we evaluated absorption and scattering coefficients and cross sections per cell dry weight and chlorophyll content. This was done for asynchronous cell culture grown in low-light (LL; 220 μmol (photons) m−2 s−1) or high-light (HL; 1760 μmol (photons) m−2 s−1) light, as well as during cell cycle of synchronous culture grown in HL. During the cell cycle, we also determined cell ultrastructural organization by transmission electron microscopy, and correlated its parameters with absorption and scattering cross sections per cell dry weight. We found that the IPPAS C-1 cells of asynchronous culture scatter light more than other cells, however, internal organization of the cells that is decisive for scattering is less sensitive to HL and LL treatment than the cell pigment content that controls absorption. The light scattering and absorption were dynamically changed during cell cycle of synchronous cells grown in the HL. Changes in ratio of chloroplast to protoplast area, reflecting amount of scattering chloroplast membrane (outer, inner) interfaces, best correlated with changes in light scattering. We suggest that the increased light scattering by the HL-acclimated IPPAS C-1 cells might be responsible for increased HL resilience reported in the literature. Biotechnological aspect of this study is that the scattering and absorption properties of phytoplankton cells ought to be calibrated for each particular growth phase or irradiance to which the cells are acclimated.
000889202 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000889202 536__ $$0G:(BioSC)20172303$$aAF AlgalFertilizer - AlgalFertilizer (20172303)$$c20172303$$x1
000889202 588__ $$aDataset connected to CrossRef
000889202 7001_ $$0P:(DE-HGF)0$$aLazár, Dušan$$b1$$eCorresponding author
000889202 7001_ $$0P:(DE-HGF)0$$aNauš, Jan$$b2
000889202 7001_ $$0P:(DE-HGF)0$$aSolovchenko, Alexei$$b3
000889202 7001_ $$0P:(DE-HGF)0$$aGorelova, Olga$$b4
000889202 7001_ $$0P:(DE-HGF)0$$aBaulina, Olga$$b5
000889202 7001_ $$0P:(DE-Juel1)129333$$aHuber, Gregor$$b6$$ufzj
000889202 7001_ $$0P:(DE-Juel1)159592$$aNedbal, Ladislav$$b7$$ufzj
000889202 773__ $$0PERI:(DE-600)2655780-0$$a10.1016/j.algal.2020.101881$$gVol. 49, p. 101881 -$$p101881 -$$tAlgal Research$$v49$$x2211-9264$$y2020
000889202 8564_ $$uhttps://juser.fz-juelich.de/record/889202/files/Barankova_2020_accepted-version.pdf$$yPublished on 2020-05-18. Available in OpenAccess from 2022-05-18.
000889202 909CO $$ooai:juser.fz-juelich.de:889202$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000889202 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129333$$aForschungszentrum Jülich$$b6$$kFZJ
000889202 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159592$$aForschungszentrum Jülich$$b7$$kFZJ
000889202 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000889202 9141_ $$y2021
000889202 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-21
000889202 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-21
000889202 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-21
000889202 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-21
000889202 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000889202 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bALGAL RES : 2018$$d2020-08-21
000889202 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-21
000889202 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-21
000889202 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-21
000889202 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-08-21
000889202 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-21
000889202 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-21
000889202 920__ $$lyes
000889202 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000889202 980__ $$ajournal
000889202 980__ $$aVDB
000889202 980__ $$aUNRESTRICTED
000889202 980__ $$aI:(DE-Juel1)IBG-2-20101118
000889202 9801_ $$aFullTexts