000889205 001__ 889205
000889205 005__ 20240712113234.0
000889205 0247_ $$2doi$$a10.1039/D0SE01207F
000889205 0247_ $$2Handle$$a2128/26684
000889205 0247_ $$2altmetric$$aaltmetric:95495871
000889205 0247_ $$2WOS$$aWOS:000593581500008
000889205 037__ $$aFZJ-2021-00115
000889205 082__ $$a660
000889205 1001_ $$0P:(DE-HGF)0$$aBayrak Pehlivan, İ.$$b0
000889205 245__ $$aThe climatic response of thermally integrated photovoltaic–electrolysis water splitting using Si and CIGS combined with acidic and alkaline electrolysis
000889205 260__ $$aCambridge$$bRoyal Society of Chemistry$$c2020
000889205 3367_ $$2DRIVER$$aarticle
000889205 3367_ $$2DataCite$$aOutput Types/Journal article
000889205 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1610213941_15794
000889205 3367_ $$2BibTeX$$aARTICLE
000889205 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889205 3367_ $$00$$2EndNote$$aJournal Article
000889205 520__ $$aThe Horizon 2020 project PECSYS aims to build a large area demonstrator for hydrogen production from solar energy via integrated photovoltaic (PV) and electrolysis systems of different types. In this study, Si- and CIGS-based photovoltaics are developed together with three different electrolyzer systems for use in the corresponding integrated devices. The systems are experimentally evaluated and a general model is developed to investigate the hydrogen yield under real climatic conditions for various thin film and silicon PV technologies and electrolyser combinations. PV characteristics using a Si heterojunction (SHJ), thin film CuInxGa1−xSe2, crystalline Si with passivated emitter rear totally diffused and thin film Si are used together with temperature dependent catalyst load curves from both acidic and alkaline approaches. Electrolysis data were collected from (i) a Pt–IrO2-based acidic electrolysis system, and (ii) NiMoW–NiO-based and (iii) Pt–Ni foam-based alkaline electrolysis systems. The calculations were performed for mid-European climate data from Jülich, Germany, which will be the installation site. The best systems show an electricity-to-hydrogen conversion efficiency of 74% and over 12% solar-to-hydrogen (STH) efficiencies using both acidic and alkaline approaches and are validated with a smaller lab scale prototype. The results show that the lower power delivered by all the PV technologies under low irradiation is balanced by the lower demand for overpotentials for all the electrolysis approaches at these currents, with more or less retained STH efficiency over the full year if the catalyst area is the same as the PV area for the alkaline approach. The total yield of hydrogen, however, follows the irradiance, where a yearly hydrogen production of over 35 kg can be achieved for a 10 m2 integrated PV–electrolysis system for several of the PV and electrolyser combinations that also allow a significant (100-fold) reduction in necessary electrolyser area for the acidic approach. Measuring the catalyst systems under intermittent and ramping conditions with different temperatures, a 5% lowering of the yearly hydrogen yield is extracted for some of the catalyst systems while the Pt–Ni foam-based alkaline system showed unaffected or even slightly increased yearly yield under the same conditions.
000889205 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000889205 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x1
000889205 588__ $$aDataset connected to CrossRef
000889205 7001_ $$0P:(DE-HGF)0$$aMalm, U.$$b1
000889205 7001_ $$0P:(DE-HGF)0$$aNeretnieks, P.$$b2
000889205 7001_ $$0P:(DE-Juel1)129851$$aGlüsen, A.$$b3
000889205 7001_ $$0P:(DE-Juel1)129892$$aMüller, Martin$$b4
000889205 7001_ $$0P:(DE-Juel1)167359$$aWelter, K.$$b5
000889205 7001_ $$0P:(DE-Juel1)130246$$aHaas, S.$$b6
000889205 7001_ $$0P:(DE-HGF)0$$aCalnan, S.$$b7
000889205 7001_ $$0P:(DE-HGF)0$$aCanino, A.$$b8
000889205 7001_ $$00000-0002-3840-2297$$aMilazzo, R. G.$$b9
000889205 7001_ $$0P:(DE-HGF)0$$aPrivitera, S. M. S.$$b10
000889205 7001_ $$0P:(DE-HGF)0$$aLombardo, S. A.$$b11
000889205 7001_ $$0P:(DE-HGF)0$$aStolt, L.$$b12
000889205 7001_ $$0P:(DE-HGF)0$$aEdoff, M.$$b13
000889205 7001_ $$00000-0003-2759-7356$$aEdvinsson, T.$$b14$$eCorresponding author
000889205 773__ $$0PERI:(DE-600)2882651-6$$a10.1039/D0SE01207F$$gVol. 4, no. 12, p. 6011 - 6022$$n12$$p6011 - 6022$$tSustainable energy & fuels$$v4$$x2398-4902$$y2020
000889205 8564_ $$uhttps://juser.fz-juelich.de/record/889205/files/d0se01207f.pdf$$yOpenAccess
000889205 8564_ $$uhttps://juser.fz-juelich.de/record/889205/files/d0se01207f1.pdf$$yRestricted
000889205 909CO $$ooai:juser.fz-juelich.de:889205$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000889205 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129851$$aForschungszentrum Jülich$$b3$$kFZJ
000889205 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129892$$aForschungszentrum Jülich$$b4$$kFZJ
000889205 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130246$$aForschungszentrum Jülich$$b6$$kFZJ
000889205 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b7$$kExtern
000889205 9101_ $$0I:(DE-HGF)0$$60000-0002-3840-2297$$aExternal Institute$$b9$$kExtern
000889205 9101_ $$0I:(DE-HGF)0$$60000-0003-2759-7356$$aExternal Institute$$b14$$kExtern
000889205 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000889205 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x1
000889205 9141_ $$y2020
000889205 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000889205 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-12
000889205 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-12
000889205 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-12
000889205 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSUSTAIN ENERG FUELS : 2018$$d2020-09-12
000889205 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-12
000889205 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-12
000889205 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-12
000889205 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889205 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-12
000889205 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-09-12$$wger
000889205 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-12
000889205 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-12
000889205 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000889205 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x1
000889205 9801_ $$aFullTexts
000889205 980__ $$ajournal
000889205 980__ $$aVDB
000889205 980__ $$aUNRESTRICTED
000889205 980__ $$aI:(DE-Juel1)IEK-5-20101013
000889205 980__ $$aI:(DE-Juel1)IEK-14-20191129
000889205 981__ $$aI:(DE-Juel1)IMD-3-20101013
000889205 981__ $$aI:(DE-Juel1)IET-4-20191129
000889205 981__ $$aI:(DE-Juel1)IET-4-20191129