001     889205
005     20240712113234.0
024 7 _ |a 10.1039/D0SE01207F
|2 doi
024 7 _ |a 2128/26684
|2 Handle
024 7 _ |a altmetric:95495871
|2 altmetric
024 7 _ |a WOS:000593581500008
|2 WOS
037 _ _ |a FZJ-2021-00115
082 _ _ |a 660
100 1 _ |a Bayrak Pehlivan, İ.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a The climatic response of thermally integrated photovoltaic–electrolysis water splitting using Si and CIGS combined with acidic and alkaline electrolysis
260 _ _ |a Cambridge
|c 2020
|b Royal Society of Chemistry
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1610213941_15794
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The Horizon 2020 project PECSYS aims to build a large area demonstrator for hydrogen production from solar energy via integrated photovoltaic (PV) and electrolysis systems of different types. In this study, Si- and CIGS-based photovoltaics are developed together with three different electrolyzer systems for use in the corresponding integrated devices. The systems are experimentally evaluated and a general model is developed to investigate the hydrogen yield under real climatic conditions for various thin film and silicon PV technologies and electrolyser combinations. PV characteristics using a Si heterojunction (SHJ), thin film CuInxGa1−xSe2, crystalline Si with passivated emitter rear totally diffused and thin film Si are used together with temperature dependent catalyst load curves from both acidic and alkaline approaches. Electrolysis data were collected from (i) a Pt–IrO2-based acidic electrolysis system, and (ii) NiMoW–NiO-based and (iii) Pt–Ni foam-based alkaline electrolysis systems. The calculations were performed for mid-European climate data from Jülich, Germany, which will be the installation site. The best systems show an electricity-to-hydrogen conversion efficiency of 74% and over 12% solar-to-hydrogen (STH) efficiencies using both acidic and alkaline approaches and are validated with a smaller lab scale prototype. The results show that the lower power delivered by all the PV technologies under low irradiation is balanced by the lower demand for overpotentials for all the electrolysis approaches at these currents, with more or less retained STH efficiency over the full year if the catalyst area is the same as the PV area for the alkaline approach. The total yield of hydrogen, however, follows the irradiance, where a yearly hydrogen production of over 35 kg can be achieved for a 10 m2 integrated PV–electrolysis system for several of the PV and electrolyser combinations that also allow a significant (100-fold) reduction in necessary electrolyser area for the acidic approach. Measuring the catalyst systems under intermittent and ramping conditions with different temperatures, a 5% lowering of the yearly hydrogen yield is extracted for some of the catalyst systems while the Pt–Ni foam-based alkaline system showed unaffected or even slightly increased yearly yield under the same conditions.
536 _ _ |a 121 - Solar cells of the next generation (POF3-121)
|0 G:(DE-HGF)POF3-121
|c POF3-121
|f POF III
|x 0
536 _ _ |a 134 - Electrolysis and Hydrogen (POF3-134)
|0 G:(DE-HGF)POF3-134
|c POF3-134
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Malm, U.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Neretnieks, P.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Glüsen, A.
|0 P:(DE-Juel1)129851
|b 3
700 1 _ |a Müller, Martin
|0 P:(DE-Juel1)129892
|b 4
700 1 _ |a Welter, K.
|0 P:(DE-Juel1)167359
|b 5
700 1 _ |a Haas, S.
|0 P:(DE-Juel1)130246
|b 6
700 1 _ |a Calnan, S.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Canino, A.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Milazzo, R. G.
|0 0000-0002-3840-2297
|b 9
700 1 _ |a Privitera, S. M. S.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Lombardo, S. A.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Stolt, L.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Edoff, M.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Edvinsson, T.
|0 0000-0003-2759-7356
|b 14
|e Corresponding author
773 _ _ |a 10.1039/D0SE01207F
|g Vol. 4, no. 12, p. 6011 - 6022
|0 PERI:(DE-600)2882651-6
|n 12
|p 6011 - 6022
|t Sustainable energy & fuels
|v 4
|y 2020
|x 2398-4902
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/889205/files/d0se01207f.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/889205/files/d0se01207f1.pdf
909 C O |o oai:juser.fz-juelich.de:889205
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129851
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129892
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130246
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 7
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 0000-0002-3840-2297
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 14
|6 0000-0003-2759-7356
913 1 _ |a DE-HGF
|b Energie
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Solar cells of the next generation
|x 0
913 1 _ |a DE-HGF
|b Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-134
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Electrolysis and Hydrogen
|x 1
914 1 _ |y 2020
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-09-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SUSTAIN ENERG FUELS : 2018
|d 2020-09-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-12
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-12
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-12
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2020-09-12
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-12
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-14-20191129
|k IEK-14
|l Elektrochemische Verfahrenstechnik
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a I:(DE-Juel1)IEK-14-20191129
981 _ _ |a I:(DE-Juel1)IMD-3-20101013
981 _ _ |a I:(DE-Juel1)IET-4-20191129
981 _ _ |a I:(DE-Juel1)IET-4-20191129


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21