
Ensemble Kalman Filter optimizing Deep Neural
Networks: An alternative approach to

non-performing Gradient Descent

Alper Yegenoglu1,2[0000−0001−8869−215X], Kai Krajsek1, Sandra Diaz
Pier1[0000−0002−3168−5394], and Michael Herty2

1 SimLab Neuroscience, Jülich Supercomputing Centre (JSC), Institute for Advanced
Simulation, JARA, Forschungszentrum Jülich GmbH, Jülich, Germany

2 Institute of Geometry and Applied Mathematics, Department of Mathematics,
RWTH Aachen University, Aachen, Germany

a.yegenoglu@fz-juelich.de

Abstract. The successful training of deep neural networks is dependent
on initialization schemes and choice of activation functions. Non-optimally
chosen parameter settings lead to the known problem of exploding or
vanishing gradients. This issue occurs when gradient descent and back-
propagation are applied. For this setting the Ensemble Kalman Filter
(EnKF) can be used as an alternative optimizer when training neural
networks. The EnKF does not require the explicit calculation of gradients
or adjoints and we show this resolves the exploding and vanishing gradi-
ent problem. We analyze different parameter initializations, propose a
dynamic change in ensembles and compare results to established methods.

Keywords: Deep Neural Networks, Kalman Filter, Activation Function,
Vanishing Gradients, Initialization

1 Introduction

The performance of deep multilayered neural networks is very susceptible to the
initialization of weights and the selected activation functions [10,31]. For example,
non-optimally chosen parameters in the initialization stage may lead to a loss
of input information in the feed-forward step or to the well known problem of
exploding and vanishing gradients during the backpropgation phase [2,3,13,29].
An example of this problem is illustrated in Figure 1, which depicts the test error
of a convolutional network trained for 10 epochs on the MNIST dataset (see
Section 2.2 for details). The figure shows that, if the initialization is not done
in an optimal way, the stochastic gradient descent (SGD) algorithm is not able
to train the network. Further, training with ADAM [17] is heavily slowed down
depending on the choice of the algorithmic parameters (c.f. Sections 3.1 and 3.2).
The vanishing gradient problem has been explored analytically in detail [9,24,26].
Although substantial work has been done regarding activation functions and
initializations, most of the studies investigate the problems using gradient descent

2 Yegenoglu et al.

500 1500 2500 3500 4500 5500 6500 7500
Iteration

0

20

40

60

80

100

Te
st

 E
rro

r i
n

%

SGD
EnKF

Fig. 1: Mean test error (dark line) of the network in % for 10 runs trained for one
epoch using different optimizers. The shaded area is the standard deviation of the runs.
The standard deviation of the normal distribution when initializing the weights is set as
σ = 1. The test is performed on a separate test dataset while the training is ongoing.

and backpropagation as optimization procedure. The aforementioned drawbacks
are related to gradients obtained within deep neuronal networks [13].

Since, in general, optimal parameters can only be determined by successive
testing, we are interested in alternative robust numerical methods for training
deep neural networks. Hence, in this work we utilize a method that does not
rely on gradient information (see Figure 1). An advantage of this approach is
that it also allows for non differentiable activation functions without introducing
additional smoothing.

Dealing with non differentiability and the vanishing gradient problem
Many of the recent approaches for training deep networks counteract against non
differentiability by applying smoothing to the rectified linear unit (ReLU) [22],
e.g. the exponential linear unit (ELU) [5]. This may also lead to numerical
instability due to possible singular limits for small smoothing parameters. Other
approaches have been suggested to circumvent the problem observed in Figure 1.
In particular, different initialization schemes like the Xavier [30] or Kaiming-
initialization [11]. The latter incorporates the number of incoming or outgoing
connections to or from the neurons of the next or previous layer, to stabilize
the training by normalizing the weights. Sussillo and Abbott [28] showed that
gradients scale only as the square root of the depth of the network. Based on this
observation they proposed a heuristic for initializing networks with a procedure
called Random Walk Initialization. They observe satisfactory performance under
those modifications.

The role of the activation function and its properties have been investigated
with regards to their influence on the training procedure. Lecun et al. [19]
discuss that the logistic function will slow down training since it induces a slower
convergence. Based on [19] Glorot et al. [30] investigate the selection of activation
functions regarding the saturation of the gradients. Many studies remark the
logistic function is not suitable for training deep networks [19,24,30].

EnFK optimizing DNN 3

In this paper we investigate the problem of training neural networks within
ill-conditioned settings. Our starting point is that a possible explanation of the
difficulties of the previous methods when training the networks could be related to
the dependence on explicit gradient information. To diminish this dependence we
explore the effects of using a particle based method, in particular, the Ensemble
Kalman Filter (EnKF). The EnKF has been widely studied in engineering
literature [1,7,15,27] as well as recently in the mathematical community [12,25].
We refer to [16] for a comprehensible introduction and [6,14] for more details
on the method. However, it has only been recently shown that EnKF could also
be applied to solve inverse problems and we formulate the training procedure
as such a problem. The EnKF does not require to calculate gradients explicitly
and omits the backpropagation step. Furthermore, this method does not require
a particular form of the activation function. We follow the formulation of the
EnKF proposed in [14]. In contrast to previous work having a similar setting
such as in [8,18] we emphasize that the scope of our contribution does not focus
on achieving high benchmark performance on the investigated datasets. Instead,
our objective is to provide an analysis based on numerical solutions regarding the
ability of the EnKF to cope with problems where gradient based algorithms fail,
are very sensitive to initial conditions or provide a poor performance in general.

Among other results, we show that a classification problem can be solved
using the EnKF as an optimizer, the logistic function as activation function and
a normal distributed initialization of the weights. The method is shown to be
independent to different realizations when initializing the weights. In contrast,
the same network is not able to achieve sufficient performance in the task when
optimized by SGD as indicated in Figure 1. Since the EnKFdepends among other
parameters on the chosen number of ensembles we propose a dynamic adaption
of algorithmic parameters depending on the reached training accuracy indicated
in Algorithm 1 and with corresponding results presented in Figure 10.

2 Ensemble Kalman Filter optimizing Neural Networks

The EnKF is a well-known iterative numerical method for nonlinear dynamic
filtering problems under noise and has been applied more recently to inverse
problems [25] as well. The parameter estimation problem is a particular inverse
problem and we apply the EnKF here. When training a deep neural network
only the evaluation of the feed-forward propagation is required, thus omitting
the backpropagation. Further, the EnKF is easily parallelizable in contrast to
gradient based approaches. First results on training deep neural networks and
recurrent neural networks with the EnKF can be found in [18,21].

2.1 Description and Properties of the Ensemble Kalman Filter

Training a neural network to learn its weights and biases can be formulated as an
optimization problem. Kovachki et al. [18] describe the training as a minimization
problem for Φ given by

Φ(u,y) = ‖G(u)− y‖2Γ (1)

4 Yegenoglu et al.

where G(u) is the model output and y is the target or label to optimize for.
We introduce briefly the EnKF following the formulation from [14]:

un+1
j = unj + C(Un)

(
D(Un) + Γ−1

)−1 (
y − G(unj)

)
(2)

where Un = {unj }Jj=1 is the set of all ensembles, n is the iteration index,
J is number of ensembles. In our setting, the ensemble uj corresponds to the
weights of the network (c.f. Section 2.2). Γ is the covariance matrix related to
the measurement of noise, in our case we use Γ as an identity matrix multiplied
with a small scalar, i.e. Γ = γI. The hyper-parameters J, γ, and n are the only
hyper-parameters of the EnKF.

The matrices C(Un) and D(Un) are covariance matrices defined by:

C(U) =
1

J

J∑
j=1

(uj − u)⊗ (G(uj)− G)T ,

D(U) =
1

J

J∑
j=1

(G(uj)− G)⊗
(
G(uj)− G

)T
,

u =
1

J

J∑
j=1

uj , G =
1

J

J∑
j=1

G(uj)

(3)

where ⊗ is the tensor-product. In [18] it was shown that under simplifed assump-

tions we have u? = arg min(Φ(u,y)) and 1
N

∑J
j=1 unj

n→∞−−−−→ u∗.

2.2 Experimental setup

In this section we present the network architecture and the training procedure for
the Ensemble Kalman Filter and the backpropagation optimizers. All simulations
were performed on a compute node with a NVIDIA Tesla K20c graphic cards,
Intel i7-4770 CPU and Scientific Linux 7.4 as an operating system.

Network Architecture The network (see also Figure 2) we use in all of our
experiments consists of two convolutional layers and a fully connected layer
and the logistic function (f(x) = 1/(1 + e−x)) applied on the output of the
convolutional layers. The kernel size of the convolution for both layers is 5× 5
with stride 1. Max pooling is applied on both convolutional layers with a kernel
size of 2 and a stride of 2. The implementation is done with the PyTorch1 [23]
library.

Training with the Ensemble Kalman Filter The training of the Convolu-
tional Neural Network using the EnKF is shown in Figure 2 as a workflow2. The

1 v.1.2.0.
2 Code can be found on GitHub: https://github.com/alperyeg/enkf-dnn-lod2020

https://github.com/alperyeg/enkf-dnn-lod2020

EnFK optimizing DNN 5

init. ensembles

weights

1@28x28
10@12x12

20@8x8
1x1280

1x10

conv. & max-pool conv. & max-pool
dense

images
labels

6,9,0...

mini-batch

output probabilities

update ensembles

Ensemble Kalman Filter

optimize weights

using labels and output

adaptive changes

Fig. 2: Workflow depicting a training phase of a Convolutional Network optimized by
an Ensemble Kalman Filter using adaptive choice of EnKF parameters.

experiments have been designed using the MNIST dataset [20]. In Section 3.3 we
show classification results obtained on the letter dataset [4]. First we initialize
the biases to be 0 and the weights W = (Wi,k)i,k for each layer as

Wi,k ∼ N (µ, σ2) (4)

with µ = 0, σ ∈ [0.01, 10], where N is the normal distribution with mean µ and
variance σ.

The initialization n = 0 and u0
j is done J times, i.e. a single member j of

the ensemble uj corresponds to a random weight matrix W according to the
normal distribution N (µ, σ2). This matrix is assigned to the ensemble u0

j := W ∈
Rlayer×weights for j = 1, . . . , J . After that unj for n > 0 is obtained by the iterative
Formula (2). We choose J = 5000 ensembles as a basis. Different settings are
discussed in Section 3. Additionally, the EnKF Formula (2) requires the model
outputs G(u), i.e. the feed-forward network output. Thus, for J iterations we
initialize the j-th ensemble as weights for the network and apply one classification
step for a given mini-batch of size 64. The scaling factor γ is set constant for all
experiments, γ = 0.01.

The output of the network and the targets are fed into the iterative EnKF
update formula, where a new set of ensembles J is calculated according to
Equation (2). We observed that a repetitive presentation of the images before
switching to new samples helped the network to converge faster and reach a better
performance. We verified the number of repeated presentations required to reach
a high accuracy on the training mini-batch was 8 repetitions. This number can be
set less or omitted after 500 iterations when a high test accuracy is reached (see
Figure 8). Every 500th iterations, after the training is completed, we obtain the
test errors. We initialize one network by setting the weights of the network with
the mean vector u of the ensembles. A test set of data images with corresponding
targets are forwarded as the input to the network and the classification error is
evaluated. We also extended the setting with an adaptive mechanism to change the
number of ensembles, iterations and repetitions depending on the test accuracy.
For details we refer to Section 3.3.

6 Yegenoglu et al.

Training with backpropagation Backpropagation is performed using SGD
or ADAM on mini-batches of size 64. The training is completed using a similar
strategy as described for the EnKF. The loss is calculated using the Cross Entropy
Loss3, which is a combination of the negative log-likelihood and log softmax
applied on the model output zj = G(uj), i.e.

σ(zj) = − log

(
ezj∑
i e
zi

)
. (5)

Note that, if the network is optimized using SGD no learning effect or improvement
can be observed for longer runs (c.f. Section 3.1).

3 Numerical Results

In this section we discuss how gradients and activation values vanish or saturate
by initialization schemes described in Section 2.2 with focus on SGD and ADAM.
Afterwards we show that different sigmoidal activation functions (Logistic func-
tion, ReLU, Tanh) and variying number of ensembles influence the performance
of the EnKF on the basis of the test error. Furthermore, we present results
obtained when training the network on the letters dataset [4].

3.1 Non evolving gradients and activation values with SGD

When SGD is applied as an optimizer in our experimental setting (see Section 2.2)
the units saturate in the early training phase and they cannot recover, as it can
be observed from Figure 3 (left). Here, the evolution of the mean (dark blue,
orange and green lines) and standard deviation (light blue, orange and green
vertical bars) of the activation values obtained after the logistic function on
the hidden layer are shown over all mini-batch iterations. For layer 1 and 2 the
activation values saturate close to 200 iterations, with mean activation value of
layer 1 of 0.4597, standard deviation of 0.2976 and a value for the mean activation
of layer 2 of 0.3178 and 0.4624 standard deviation. The mean activation value
in layer 3 (0.1) stays constant from the first iteration on and has a standard
deviation of 0.2908. Saturation is clearly reflected in the gradients as depicted
in Figure 3 (right). The distribution shows that after 800 mini-batch iterations
the distribution didn’t change and the mean of the gradients is close to zero,
confirming saturated gradients.

If the training is run for more epochs (e.g. 50 epochs) the network is still
not able to learn. This is depicted in Figure 4 (left) where the gradients stay at
zero mean for all three layers. Only layer 3 has an oscillating standard deviation
around the value 0.1. The same situation is presented for the activation functions
as it can be seen in Figure 4, in which the distribution of the mean activation is
depicted. For layer 1 there is a very small shift of the mean from 0.475 towards
0.5, but the values of the other layers still do not change.

3 following Pytorch’s nomenclature

EnFK optimizing DNN 7

0 200 400 600 800
Iterations of mini-batches

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Ac
tiv

at
io

n
va

lu
e

layer 1
layer 2
layer 3

0.00002 0.00002
0

10000

20000

30000

40000

Co
un

ts

Layer 1

0.00002 0.00000
Backpropagated Gradients

0

10000

20000

30000

40000

50000

Layer 2

2 1 0 1
1e 8

0.0

0.2

0.4

0.6

0.8

1.0

1e9 Layer 3
iteration 0
iteration 200
iteration 400
iteration 600
iteration 800

Fig. 3: Left: Mean and standard deviation of the activation values during training
for the three hidden layers of the network. SGD is applied as optimizer. Note: only
every 8th entry is shown. Right: Normalized histogram depicting a distribution of the
gradients with a mean value of 0 for all three layers. Iterations are one epoch run with
a mini-batch size of 64.

3.2 Slowly evolving gradients and activation values with ADAM

In our experiments we observe that ADAM is more robust when optimizing
the network compared to SGD in terms of performance. When the weights are
initialized with σ = 1 the network will slowly start to correctly classify the
dataset. Within 10 epochs it reaches more than 95% of test accuracy (see also
Figure 5). When fixing σ = 3 a similar behavior to the SGD setting is observable
in the first epochs (c.f. Figure 5). When looking at the mean and standard
deviation of the activation values within in the first epoch a fast saturation is
not observed for layer 1 (c.f. Figure 6 (left)). We see an increase of the mean
value of the activation values from 0.49 up to 0.53 (overall mean value of 0.5124),
with standard deviation of 0.2860. This indicates a slow saturation in the longer
run, which can be verified by analyzing layer 2. Layer 2 also increases it’s mean
activation value (0.47) from the first iteration to the value 0.5, but stagnates at
around the 400th iteration with a value of 0.5 (overall mean is 0.4957, standard
deviation is 0.4965). The mean value of layer 3 stays constant at 0.1.
Figure 7 (left) shows the progress of the mean activation values over 50 epochs.
An acceptable learning performance with regards to the test accuracy is achieved
after 30 epochs. This is reflected especially in layer 1: here, we observe how
the mean evolves over the epochs. While in epoch 1 the distribution is around
0.49, we can see after 40 epochs that the distribution evolves around 0.56. On
the other hand the distribution of the activation values of layer 2 and 3 stay
constant (around 0.5 and 0.0). The mean distribution of gradients obtained by
backpropagation after one epoch is close to zero for all layers as one can observe

8 Yegenoglu et al.

0 10 20 30 40
Epochs

0.3

0.2

0.1

0.0

0.1

0.2

0.3
Gr

ad
ie

nt
s

layer 1
layer 2
layer 3

0.475 0.500 0.525 0.550
0

20

40

60

80

100

120

140

Co
un

ts

Layer 1

0.1 0.2 0.3 0.4 0.5
Activation values

0

20

40

60

80

100 Layer 2

2 0 2
1e 8+1e 1

0

1

2

3

4

5

6

7

8

1e8 Layer 3
Epoch 0
Epoch 10
Epoch 20
Epoch 30
Epoch 40

Fig. 4: Left: Mean (blue, orange and green lines) and standard deviation (blue, orange
and green vertical bars) of the backpropagated gradients for all three layers for 50
epochs. Right: Mean distributions of activation values over 50 epochs for all three layers
using SGD as optimizer.

0 10 20 30 40 50
Epochs

0

20

40

60

80

Te
st

 e
rro

r i
n

%

SGD = 1
SGD = 3
ADAM = 1
ADAM = 3

Fig. 5: Test error of the network trained for 50 epochs on the MNIST dataset. Different
values for the standard deviation σ are used when initializing the weights.

in Figure 6 (right). However, in the long run (i.e. after 30 epochs) the network
starts to perform better (up to 84% accuracy). In Figure 7 (left) the mean and
standard deviations of the backpropagated gradients in layer 1 and layer 2 do
not vary strongly up to epoch 10. Until then, the network shows no learning
capability (test accuracy under 10%). Mean values in the first epochs for layer
1 are between −0.3 and 0.2 and standard deviations are between −0.8 and 0.6
showing a decreasing trend. For layer 2 mean values are between −0.1 and 0.1
and standard deviations are between −0.2 and 0.2. From epoch 10 up to epoch
28 both mean and standard deviation of layer 1 and 2 decrease and stay constant
close to zero for both values. After the 28th epoch the network starts to learn.
An increase and a small variance in the mean and standard deviations of both
layers 1 and 2 can be observed again (layer 1 means in [−0.02, 0.02], standard
deviations in [−0.01, 0.06]; layer 2 means in [−0.01, 0.01], standard deviation in
[−0.01, 0.03]). The mean activation value of layer 3 stays constant in all iterations

EnFK optimizing DNN 9

0 200 400 600 800
Iterations of mini-batches

0.2

0.0

0.2

0.4

0.6

0.8

1.0
Ac

tiv
at

io
n

va
lu

e
layer 1
layer 2
layer 3

0.02 0.01 0.00
0

20

40

60

80

100

Co
un

ts

Layer 1

0.02 0.01 0.00
Backpropagated Gradients

0

200

400

600

800

1000 Layer 2

0.02 0.01 0.00
0

1

2

3

4

5 1e8 Layer 3
iteration 0
iteration 200
iteration 400
iteration 600
iteration 800

Fig. 6: Left: Mean (dark blue, orange and green lines) and standard deviation (light
blue, orange and green vertical bars) of the activation values during training for the
three hidden layers of the network in one epoch. ADAM is applied as optimizer. Right:
Normalized histogram depicting a distribution of the gradients with a mean value of 0
for all three layers. Iterations are one epoch run with a mini-batch size of 64.

at a very small value close to zero, in contrast to the standard deviation which
starts in the first epoch at 0.16 and decreases to 0.01. We offer the following
interpretation. First, this shows that a network can recover from the saturation
of its gradients given enough time to train. Secondly, a good performance shows
that the network converges to a suitable classification with high accuracy only
for suitable initial settings.

0 10 20 30 40
Epochs

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Gr
ad

ie
nt

s

layer 1
layer 2
layer 3

0.48 0.50 0.52 0.54 0.56
0

50

100

150

200

250

300

Co
un

ts

0.46 0.48 0.50 0.52
Activation values

0

200

400

600

800

1000

2 0 2
1e 8+1e 1

0.0

0.2

0.4

0.6

0.8

1.0

1e9
Epoch 0
Epoch 10
Epoch 20
Epoch 30
Epoch 40

Fig. 7: Left: Mean (line) and standard deviation (vertical bar) of the backpropagated
gradients for all three layers for 50 epochs. Right: Mean distributions of activation
values over 50 epochs for all three layers using ADAM as optimizer.

10 Yegenoglu et al.

3.3 Performance of the Ensemble Kalman Filter

Given the same setup using the Ensemble Kalman Filter enables the network to
perform well (see Figure 8 and 9). After the first epoch the network has a test
error of 3.8% when classifying the MNIST dataset. In the following we analyze
in detail the performance with varying number of ensembles and its sensitivity
to different activation functions.

500 1500 2500 3500 4500 5500 6500 7500
Iterations

0

20

40

60

80

Te
st

 E
rro

r i
n

%

Logistic Function
ReLU
Tanh

500 1500 2500 3500 4500 5500 6500 7500
Iterations

0

20

40

60

80

Te
st

 E
rro

r i
n

%

100 ensembles
5000 ensembles
10000 ensembles

Fig. 8: Left: Test error during training on the MNIST dataset for different activation
functions optimized by EnKF. Right: Test error during training on the MNIST dataset
for different ensemble sizes within one epoch. Every 500th iteration is shown.

Different Activation Functions We investigated the network training for dif-
ferent activation functions such as ReLU: ReLU(x) = max(0, x), Tanh: tanh(x) =
ex − e−x

ex + e−x
and a Logistic Function: f(x) =

1

1 + e−x
. Figure 8 (left) depicts the

test errors in % using different activation functions over iterations. The test
errors do not change strongly when ReLU or Logistic Function as activation
functions are applied. There is a small gap of 0.45% error after the 500th iteration
(test errors with Logistic Function: 6.11%, ReLU: 6.56%). The test error after
one epoch is 3.8% when Logistic Function is applied and 3.75% for ReLU. If
Tanh is used as activation function the performance is slightly worse, in the
500th iteration the error is at 8.15%, while after 7500 iterations it is 4.51%. The
discrepancy may be induced because of the range of the Tanh function which
is in [−1, 1], whereas the images are normalized between [0, 1] (c.f. [19]). Due
to the fast convergence the EnKF reaches a suitable accuracy already after 500
iterations. This behavior results in a slower improvement of the accuracy between
the 500th and the 7500th iteration, approximately 3%.

EnKF-NN Training on Letters Dataset Figure 9 presents the test error
on the letters dataset using the EnKF optimizer. The parameter-setting is the

EnFK optimizing DNN 11

same as in Section 2.2. We use 5000 and 10000 ensembles during the training.
We observe a higher number of ensembles achieves a slightly better classification
with a test error 15.1% within one epoch. With 5000 ensembles the test error is
at 16.32%. We can conclude that a higher number of ensembles enables a better
performance but is not necessarily an overall solution to increase the accuracy.
To this point we didn’t test if there is a smaller ensemble size than 10000 which
achieves the same error rate.

500 1500 2500 3500 4500 5500 6500 7500
Iterations

10

20

30

40

50

60

70

80

90

Te
st

 e
rro

r i
n

%

5000 ensembles
10000 ensembles

Fig. 9: Test error during training on the letters dataset for different ensemble sizes
within one epoch. Every 500th iteration is shown.

Varying number of Ensembles A hyperparameter for the EnKF is the number
of ensembles. The convergence behavior of the EnKF is strongly influenced by this
value. The test error for a different number of ensembles is depicted in Figure 8
(right). A small size of a few hundred ensembles is not sufficient to optimize
the network to perform with a suitable accuracy. Here, the test error stagnates
around 47% which is just above chance level when classifying the test dataset.
In contrast, a higher number of ensembles, e.g. 5000 ensembles, is sufficient to
achieve a good performance on the test set. The test error after 7500 iterations is
at 3.8%. Having even more ensembles decreases the test error slightly, e.g. with
10000 ensembles the error drops to 3%.

Adaptive changes The results of the previous sections indicate a possible
reduction of ensembles, repetitions and iterations. To achieve these reductions
we implemented an adaptive mechanism. The main idea is based on comparing
the actual with the previous test accuracy (tn, tn−1) and deciding to change if
the number stay in given upper and lower boundaries (bu, bl). The algorithm is
outlined in Algorithm 1.

Figure 10 depicts two runs of the EnKF optimization on the MNIST dataset
with the adaptive change (orange graphs, “adaptive”) and without (blue graphs,
“fixed”). The fixed run follows the setting described in Section 2.2 and e.g. con-
ducted for Figure 8, the values of the parameters are fixed. The test error is

12 Yegenoglu et al.

Algorithm 1 Algorithm for adaptive choice of parameters

Input: Lower bound bl, upper bound bu, error threshold ε, test error tn, mini-
batch size m, length of dataset Ds, update interval τ , ensemble update step υ, error
difference threshold κ
Output: Number of ensembles J , total iterations N , repetitions r
if n mod τ = 0 and n > 0 then

if tn < ε and tn < tn−1 then
if J > bl and tn−1 − tn ≤ κ then

J = J − υ
N = Ds

m
· r

r = r − 1
else if n < bu and tn−1 − tn > κ then

J = J + υ
N = Ds

m
· r

r = r + 1

shown on the left y-Axis and the number of ensembles and repetitions are on the
right y-Axes. In every 500th iteration τ the test errors are evaluated and changes
can be applied if tn < 10%. The test error of the fixed run is shown up to iteration
2500 as by then one epoch is reached with the adaptive setting. We observed
that the adaptive changes (Figure 10 left, orange line with dots) do not increase
the test error while they reach the same accuracy as the fixed run (blue line
with dots). Due to the fast convergence of the EnKF we were able decrease the
repetitions r (Figure 10 right, orange line with stars) by 1 in every 500th iteration.
Additionally, we noticed that more repetitions do not increase the performance
after a few iterations and after a satisfactory test accuracy is reached. After 1500
iterations the number of ensembles N (orange line with squares) are decreased
by υ = 1000. We were rather conservative by slowly increasing or decreasing all
numbers. We decreased for instance the number of ensembles only by υ = 1000
and not e.g. by half to ensure smaller changes and stability. The lower bound
bl is set to minimal number of 1000 ensembles and the upper bound buis set to
a maximal number of 10000 ensembles. For the same reasons we required that
in order to decrease the values the test error has to be equal or less than κ = 1
between the actual and previous test errors. This restrictive behavior causes the
slow decrease of the number of ensembles after 1500 iterations. Since there was
no increase in the test error an increase of the values did not occur.

4 Conclusions and Outlook

Network performance is susceptible to weight initialization and proper selection of
activation functions. Improperly selected parameters cause the vanishing gradient
problem especially when training with gradient descent and backpropagation.
We have shown in Section 3 that also simple deep networks are affected by
this problem. For a better understanding we investigated how gradients and
activation function values vanish or saturate by analysing their distributions,

EnFK optimizing DNN 13

0 500 1000 1500 2000 2500
Iterations

0

20

40

60

80

Te
st

 E
rro

r
in

 %

fixed
adaptive

0 500 1000 1500 2000 2500
2000

2500

3000

3500

4000

4500

5000

Nu
m

be
r o

f e
ns

em
bl

es

ensembles
repetitions 3

4

5

6

7

8

Nu
m

be
r o

f r
ep

et
iti

on
s

Fig. 10: Two runs on the MNIST dataset with (adaptive, orange graphs) and without
(fixed, blue graphs) adaptive changes. In the adaptive setting, every 500 iteration the
values of the parameters required by the EnKF are dynamically changed depending on
the test errors.

mean and standard deviation per layer over iterations and epochs for different
parameters. Our setting focused on SGD and ADAM as optimizers, random
normal distributed weight initializations and the logistic function as activation
function. The network was not able to learn or only very slowly on the MNIST
classification task. In our experiments ADAM was more robust in contrast to
SGD and performed better for different parameter settings. As an alternative to
backpropagation we analyzed the use of the Ensemble Kalman Filter (EnKF),
which omits the calculation of gradients and only requires the feed-forward step
in the training phase.

Given the same settings, the EnKF is able to optimize the network on the
MNIST and letters datasets and achieve a performance above 96% and 85%. We
investigated the activation values of different network layers by analyzing the
distribution, mean and standard deviations over several iterations within one
epoch. Further, we experimented with the number of ensembles and concluded that
a larger ensemble size does not necessarily give a significant better performance
as one could expect (Section 3.3). Additionally, we investigated how different
initializations of the weights influence the overall learning performance. Our study
didn’t focus on reaching state of the art classification accuracy. Regarding solely
the classification performance we refer to [8,18]. Due to the fast convergence of
the EnKF the network was able to perform on the MNIST dataset already after
500 iterations. The fast convergence on the other hand may be problematic if the
method is stuck in a local minimum and exploration of other possible minima is
desirable. To counteract this issue it is possible to add noise to the ensembles
in every update step as it was suggested in [18]. Another approach would be to
adapt the scaling γ of the covariance matrix Γ dynamically (see Equation 3).
To dynamically change the number of iterations, repetitions and ensembles we
extended the setting with an adaptive algorithm to modify parameters depending
on the test errors.

14 Yegenoglu et al.

Our approach provides an alternative to optimization of multilayered neural
networks which can overcome the problems introduced by different activation
functions and initialization settings. This opens new avenues in research of the
benefits of using these activation functions and initializations. It also provides a
basis for new research on gradient free alternatives to optimize learning in neural
networks.

In training neural networks there is a large number of variables which can
affect the results. In our work we have chosen a narrow set of parameters to
explore, while leaving everything else fixed. This approach allows us to control
the conclusions we draw from these experiments. We consider our work a first
step into exploring setups where using the EnKF can be beneficial and maybe
even a unique option to deal with specific problems of interest to the scientific
community.

Acknowledgements

AY would like to thank Giuseppe Visconti and Wouter Kljin for fruitful discussions.
Partially funded by the Helmholtz Association through the Helmholtz Portfolio
Theme “Supercomputing and modeling for the Human Brain”. This work was
performed as part of the Helmholtz School for Data Science in Life, Earth and
Energy (HDS-LEE). This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreements No.
785907 (HBP SGA2) and No. 826421 (VirtualBrainCloud). It has also received
funding from the CSD-SSD no. 20190612, PHD-PROGRAM-20170404, and DFG
EXC-2023 Internet of Production - 390621612. This work is partly supported by
the Helmholtz Association Initiative and Networking Fund under project number
ZT-I-0003.

References

1. Aanonsen, S.I., Nævdal, G., Oliver, D.S., Reynolds, A.C., Vallès, B., et al.: The
ensemble kalman filter in reservoir engineering–a review. Spe Journal 14(03), 393–
412 (2009)

2. Bengio, Y., Frasconi, P., Simard, P.: The problem of learning long-term dependencies
in recurrent networks. In: IEEE International Conference on Neural Networks. pp.
1183–1188 vol.3 (March 1993). https://doi.org/10.1109/ICNN.1993.298725

3. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient
descent is difficult. IEEE Transactions on Neural Networks 5(2), 157–166 (Mar
1994). https://doi.org/10.1109/72.279181

4. Bulatov, Y.: notMNIST. Kaggle dataset (Feb 2018), https://www.kaggle.com/
jwjohnson314/notmnist#notMNIST_large

5. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289 (2015)

6. Evensen, G.: Data Assimilation. Springer Berlin Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03711-5, https://doi.org/10.1007%

2F978-3-642-03711-5

https://doi.org/10.1109/ICNN.1993.298725
https://doi.org/10.1109/72.279181
https://www.kaggle.com/jwjohnson314/notmnist#notMNIST_large
https://www.kaggle.com/jwjohnson314/notmnist#notMNIST_large
https://doi.org/10.1007/978-3-642-03711-5
https://doi.org/10.1007%2F978-3-642-03711-5
https://doi.org/10.1007%2F978-3-642-03711-5

EnFK optimizing DNN 15

7. Evensen, G.: Sequential data assimilation, pp. 27–45. Springer Berlin Heidelberg,
Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03711-5 4, https:

//doi.org/10.1007/978-3-642-03711-5_4

8. Haber, E., Lucka, F., Ruthotto, L.: Never look back - A modified EnKF method
and its application to the training of neural networks without back propagation
(2018)

9. Hanin, B.: Which neural net architectures give rise to exploding and vanishing
gradients? In: Advances in Neural Information Processing Systems. pp. 582–591
(2018)

10. Hayou, S., Doucet, A., Rousseau, J.: On the impact of the activation function on
deep neural networks training. arXiv preprint arXiv:1902.06853 (2019)

11. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification (2015)

12. Herty, M., Visconti, G.: Kinetic methods for inverse problems. Kinetic & Related
Models 12(19375093 2019 5 1109), 1109 (2019)

13. Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J., et al.: Gradient flow in
recurrent nets: the difficulty of learning long-term dependencies (2001)

14. Iglesias, M.A., Law, K.J.H., Stuart, A.M.: Ensemble kalman meth-
ods for inverse problems. Inverse Problems 29(4), 045001 (mar 2013).
https://doi.org/10.1088/0266-5611/29/4/045001, https://doi.org/10.1088%

2F0266-5611%2F29%2F4%2F045001

15. Janjic, T., McLaughlin, D., Cohn, S.E., Verlaan, M.: Conservation of mass and
preservation of positivity with ensemble-type kalman filter algorithms. Monthly
Weather Review 142(2), 755–773 (2014)

16. Katzfuss, M., Stroud, J.R., Wikle, C.K.: Understanding the ensemble kalman filter.
The American Statistician 70(4), 350–357 (2016)

17. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

18. Kovachki, N.B., Stuart, A.M.: Ensemble kalman inversion: A derivative-free tech-
nique for machine learning tasks (2018)

19. Lecun, Y., Bottou, L., Orr, G.B., Müller, K.R.: Efficient backprop (1998)
20. LeCun, Y., Cortes, C., Burges, C.: Mnist handwritten digit database. AT&T Labs

[Online]. Available: http://yann. lecun. com/exdb/mnist 2, 18 (2010)
21. Mirikitani, D.T., Nikolaev, N.: Dynamic modeling with ensemble kalman

filter trained recurrent neural networks. In: 2008 Seventh Interna-
tional Conference on Machine Learning and Applications. IEEE (2008).
https://doi.org/10.1109/icmla.2008.79

22. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines.
In: Proceedings of the 27th international conference on machine learning (ICML-10).
pp. 807–814 (2010)

23. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch. In:
NeurIPS Autodiff Workshop (2017)

24. Pennington, J., Schoenholz, S., Ganguli, S.: Resurrecting the sigmoid in deep
learning through dynamical isometry: theory and practice. In: Advances in neural
information processing systems. pp. 4785–4795 (2017)

25. Schillings, C., Stuart, A.M.: Convergence analysis of ensemble Kalman
inversion: the linear, noisy case. Appl. Anal. 97(1), 107–123 (2018).
https://doi.org/10.1080/00036811.2017.1386784, https://doi.org/10.1080/

00036811.2017.1386784

https://doi.org/10.1007/978-3-642-03711-5_4
https://doi.org/10.1007/978-3-642-03711-5_4
https://doi.org/10.1007/978-3-642-03711-5_4
https://doi.org/10.1088/0266-5611/29/4/045001
https://doi.org/10.1088%2F0266-5611%2F29%2F4%2F045001
https://doi.org/10.1088%2F0266-5611%2F29%2F4%2F045001
https://doi.org/10.1109/icmla.2008.79
https://doi.org/10.1080/00036811.2017.1386784
https://doi.org/10.1080/00036811.2017.1386784
https://doi.org/10.1080/00036811.2017.1386784

16 Yegenoglu et al.

26. Schoenholz, S.S., Gilmer, J., Ganguli, S., Sohl-Dickstein, J.: Deep information
propagation. arXiv preprint arXiv:1611.01232 (2016)

27. Schwenzer, M., Stemmler, S., Ay, M., Bergs, T., Abel, D.: Ensemble kalman filtering
for force model identification in milling. Procedia CIRP 82, 296–301 (2019)

28. Sussillo, D., Abbott, L.: Random walk initialization for training very deep feedfor-
ward networks. arXiv preprint arXiv:1412.6558 (2014)

29. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization
and momentum in deep learning. In: International conference on machine learning.
pp. 1139–1147 (2013)

30. Xavier Glorot, Y.B.: Understanding the difficulty of training deep feedforward
neural networks (2010)

31. Xie, D., Xiong, J., Pu, S.: All you need is beyond a good init: Exploring better solu-
tion for training extremely deep convolutional neural networks with orthonormality
and modulation. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 6176–6185 (2017)

	Ensemble Kalman Filter optimizing Deep Neural Networks: An alternative approach to non-performing Gradient Descent

