000889212 001__ 889212
000889212 005__ 20240712113235.0
000889212 0247_ $$2doi$$a10.1002/aenm.202002926
000889212 0247_ $$2ISSN$$a1614-6832
000889212 0247_ $$2ISSN$$a1614-6840
000889212 0247_ $$2Handle$$a2128/27308
000889212 0247_ $$2altmetric$$aaltmetric:97464812
000889212 0247_ $$2WOS$$aWOS:000604739000001
000889212 037__ $$aFZJ-2021-00118
000889212 082__ $$a050
000889212 1001_ $$0P:(DE-Juel1)173820$$aLiu, Chang$$b0$$eCorresponding author
000889212 245__ $$aExploring the Interface of Skin‐Layered Titanium Fibers for Electrochemical Water Splitting
000889212 260__ $$aWeinheim$$bWiley-VCH$$c2021
000889212 3367_ $$2DRIVER$$aarticle
000889212 3367_ $$2DataCite$$aOutput Types/Journal article
000889212 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1615200970_5513
000889212 3367_ $$2BibTeX$$aARTICLE
000889212 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889212 3367_ $$00$$2EndNote$$aJournal Article
000889212 520__ $$aWater electrolysis is the key to a decarbonized energy system, as it enables the conversion and storage of renewably generated intermittent electricity in the form of hydrogen. However, reliability challenges arising from titanium‐based porous transport layers (PTLs) have hitherto restricted the deployment of next‐generation water‐splitting devices. Here, it is shown for the first time how PTLs can be adapted so that their interface remains well protected and resistant to corrosion across ≈4000 h under real electrolysis conditions. It is also demonstrated that the malfunctioning of unprotected PTLs is a result triggered by additional fatal degradation mechanisms over the anodic catalyst layer beyond the impacts expected from iridium oxide stability. Now, superior durability and efficiency in water electrolyzers can be achieved over extended periods of operation with less‐expensive PTLs with proper protection, which can be explained by the detailed reconstruction of the interface between the different elements, materials, layers, and components presented in this work.
000889212 536__ $$0G:(DE-HGF)POF4-134$$a134 - Plasma-Wand-Wechselwirkung (POF4-134)$$cPOF4-134$$fPOF IV$$x0
000889212 536__ $$0G:(DE-HGF)POF4-123$$a123 - Chemische Energieträger (POF4-123)$$cPOF4-123$$fPOF IV$$x1
000889212 588__ $$aDataset connected to CrossRef
000889212 7001_ $$0P:(DE-Juel1)165174$$aShviro, Meital$$b1
000889212 7001_ $$0P:(DE-HGF)0$$aGago, Aldo S.$$b2
000889212 7001_ $$0P:(DE-HGF)0$$aZaccarine, Sarah F.$$b3
000889212 7001_ $$0P:(DE-Juel1)172758$$aBender, Guido$$b4
000889212 7001_ $$0P:(DE-HGF)0$$aGazdzicki, Pawel$$b5
000889212 7001_ $$0P:(DE-HGF)0$$aMorawietz, Tobias$$b6
000889212 7001_ $$0P:(DE-HGF)0$$aBiswas, Indro$$b7
000889212 7001_ $$0P:(DE-Juel1)162160$$aRasinski, Marcin$$b8$$eCorresponding author
000889212 7001_ $$0P:(DE-Juel1)169432$$aEverwand, Andreas$$b9
000889212 7001_ $$0P:(DE-Juel1)161348$$aSchierholz, Roland$$b10
000889212 7001_ $$0P:(DE-HGF)0$$aPfeilsticker, Jason$$b11
000889212 7001_ $$0P:(DE-Juel1)129892$$aMüller, Martin$$b12
000889212 7001_ $$0P:(DE-HGF)0$$aLopes, Pietro P.$$b13
000889212 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b14
000889212 7001_ $$0P:(DE-HGF)0$$aPivovar, Bryan$$b15
000889212 7001_ $$0P:(DE-HGF)0$$aPylypenko, Svitlana$$b16
000889212 7001_ $$0P:(DE-HGF)0$$aFriedrich, K. Andreas$$b17
000889212 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b18
000889212 7001_ $$0P:(DE-Juel1)145276$$aCarmo, Marcelo$$b19$$eCorresponding author
000889212 773__ $$0PERI:(DE-600)2594556-7$$a10.1002/aenm.202002926$$gp. 2002926 -$$n8$$p2002926$$tAdvanced energy materials$$v11$$x1614-6840$$y2021
000889212 8564_ $$uhttps://juser.fz-juelich.de/record/889212/files/Invoice-5601512.pdf
000889212 8564_ $$uhttps://juser.fz-juelich.de/record/889212/files/Invoice_S47XFS2CT.pdf
000889212 8564_ $$uhttps://juser.fz-juelich.de/record/889212/files/Invoice_SVS2G16YZ.pdf
000889212 8564_ $$uhttps://juser.fz-juelich.de/record/889212/files/document.pdf
000889212 8564_ $$uhttps://juser.fz-juelich.de/record/889212/files/Postprint_RASINSKI.pdf$$yOpenAccess
000889212 8564_ $$uhttps://juser.fz-juelich.de/record/889212/files/aenm.202002926.pdf$$yOpenAccess
000889212 8767_ $$d2021-01-10$$eHybrid-OA$$jDEAL$$lDEAL: Wiley
000889212 8767_ $$8SDIVE2012029$$92020-12-14$$d2021-01-14$$eOther$$jZahlung erfolgt$$zBelegnr. 1200161951
000889212 8767_ $$85601512$$92021-02-17$$d2021-02-23$$eCover$$jZahlung erfolgt$$zBelegnr. 1200164135
000889212 8767_ $$8S47XFS2CT$$92020-02-04$$d2020-02-14$$eOther$$jZahlung erfolgt$$zService Figure Formatting
000889212 8767_ $$8SVS2G16YZ$$92020-05-25$$d2020-05-25$$eOther$$jZahlung erfolgt$$zBelegnr.  1200153842, figure
000889212 909CO $$ooai:juser.fz-juelich.de:889212$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$pOpenAPC$$popen_access$$popenaire
000889212 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173820$$aForschungszentrum Jülich$$b0$$kFZJ
000889212 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)173820$$aRWTH Aachen$$b0$$kRWTH
000889212 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165174$$aForschungszentrum Jülich$$b1$$kFZJ
000889212 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162160$$aForschungszentrum Jülich$$b8$$kFZJ
000889212 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169432$$aForschungszentrum Jülich$$b9$$kFZJ
000889212 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161348$$aForschungszentrum Jülich$$b10$$kFZJ
000889212 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129892$$aForschungszentrum Jülich$$b12$$kFZJ
000889212 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b14$$kFZJ
000889212 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b14$$kRWTH
000889212 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich$$b18$$kFZJ
000889212 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129883$$aRWTH Aachen$$b18$$kRWTH
000889212 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145276$$aForschungszentrum Jülich$$b19$$kFZJ
000889212 9130_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000889212 9130_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x1
000889212 9131_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
000889212 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x1
000889212 9141_ $$y2021
000889212 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-27
000889212 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-27
000889212 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-08-27
000889212 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000889212 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-27
000889212 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bADV ENERGY MATER : 2018$$d2020-08-27
000889212 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ENERGY MATER : 2018$$d2020-08-27
000889212 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-08-27$$wger
000889212 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-27
000889212 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-27
000889212 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889212 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-27
000889212 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-27
000889212 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-27
000889212 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-27
000889212 920__ $$lyes
000889212 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000889212 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x1
000889212 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x2
000889212 9801_ $$aAPC
000889212 9801_ $$aFullTexts
000889212 980__ $$ajournal
000889212 980__ $$aVDB
000889212 980__ $$aUNRESTRICTED
000889212 980__ $$aI:(DE-Juel1)IEK-14-20191129
000889212 980__ $$aI:(DE-Juel1)IEK-9-20110218
000889212 980__ $$aI:(DE-Juel1)IEK-4-20101013
000889212 980__ $$aAPC
000889212 981__ $$aI:(DE-Juel1)IET-4-20191129
000889212 981__ $$aI:(DE-Juel1)IET-1-20110218
000889212 981__ $$aI:(DE-Juel1)IFN-1-20101013
000889212 981__ $$aI:(DE-Juel1)IET-4-20191129
000889212 981__ $$aI:(DE-Juel1)IET-1-20110218