001     889213
005     20220930130302.0
024 7 _ |a 10.1002/vzj2.20102
|2 doi
024 7 _ |a 2128/27230
|2 Handle
024 7 _ |a altmetric:97182720
|2 altmetric
024 7 _ |a WOS:000620855500007
|2 WOS
037 _ _ |a FZJ-2021-00119
082 _ _ |a 550
100 1 _ |a Schneider, Jana
|0 P:(DE-Juel1)173660
|b 0
|e Corresponding author
245 _ _ |a Prediction of soil evaporation measured with weighable lysimeters using the FAO Penman–Monteith method in combination with Richards’ equation
260 _ _ |a Hoboken, NJ
|c 2021
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1614176571_30086
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Multiannual data (2016–2018) from 12 weighed lysimeters (four soil types with textures ranging from sandy loam to silt loam, three replicates) of the TERENO SOILCan network were used to evaluate if evaporation (E) rates could be predicted from weather data using the FAO Penman–Monteith (PM) method combined with soil water flow simulations using the Richards equation. Soil hydraulic properties (SHPs) were estimated either from soil texture using the ROSETTA pedotransfer functions, from in situ measured water retention curves, or from soil surface water contents using inverse modeling. In all years, E was water limited and the measured evaporation rates (Em) surprisingly did not vary significantly among the four different soil types. When SHPs derived from pedotransfer functions were used, simulated evaporation rates of the finer textured soils overestimated the measured ones considerably. Better agreement was obtained when simulations were based on in situ measured or inversely estimated SHPs. The SHPs estimated from pedotransfer functions represented unrealistically large characteristic lengths of evaporation (Lc), and Lc was found to be a useful characteristic to constrain estimates of SHPs. Also, when soil evaporation was water limited and Em rates were below Epot (PM evaporation scaled by an empirical coefficient), the diurnal dynamics of Em followed those of Epot. The Richards equation that considers only isothermal liquid water flow did not reproduce these dynamics caused by temperature dependent vapor transport in the soil.
536 _ _ |a 217 - Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten (POF4-217)
|0 G:(DE-HGF)POF4-217
|c POF4-217
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Groh, Jannis
|0 P:(DE-Juel1)158034
|b 1
700 1 _ |a Pütz, Thomas
|0 P:(DE-Juel1)129523
|b 2
700 1 _ |a Helmig, Rainer
|0 0000-0003-2601-5377
|b 3
700 1 _ |a Rothfuss, Youri
|0 P:(DE-Juel1)145658
|b 4
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 5
700 1 _ |a Vanderborght, Jan
|0 P:(DE-Juel1)129548
|b 6
773 _ _ |a 10.1002/vzj2.20102
|0 PERI:(DE-600)2088189-7
|n 1
|p e20102
|t Vadose zone journal
|v 20
|y 2021
|x 1539-1663
856 4 _ |u https://juser.fz-juelich.de/record/889213/files/document.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/889213/files/vzj2.20102.pdf
909 C O |o oai:juser.fz-juelich.de:889213
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)173660
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)158034
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129523
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)145658
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129549
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129548
913 0 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-200
|4 G:(DE-HGF)POF
|v Terrestrial Systems: From Observation to Prediction
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b VADOSE ZONE J : 2018
|d 2020-08-28
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-08-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-08-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-28
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-08-28
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-28
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21