000889214 001__ 889214
000889214 005__ 20220930130303.0
000889214 0247_ $$2doi$$a10.1002/elsc.202000088
000889214 0247_ $$2ISSN$$a1618-0240
000889214 0247_ $$2ISSN$$a1618-2863
000889214 0247_ $$2Handle$$a2128/27337
000889214 0247_ $$2WOS$$aWOS:000605178700001
000889214 037__ $$aFZJ-2021-00120
000889214 082__ $$a660
000889214 1001_ $$0P:(DE-Juel1)165723$$aHemmerich, Johannes$$b0
000889214 245__ $$apyFOOMB: Python framework for object oriented modeling of bioprocesses
000889214 260__ $$aWeinheim$$bWiley-VCH$$c2021
000889214 3367_ $$2DRIVER$$aarticle
000889214 3367_ $$2DataCite$$aOutput Types/Journal article
000889214 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1630571880_13118
000889214 3367_ $$2BibTeX$$aARTICLE
000889214 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889214 3367_ $$00$$2EndNote$$aJournal Article
000889214 520__ $$aQuantitative characterization of biotechnological production processes requires the determination of different key performance indicators (KPIs) such as titer, rate and yield. Classically, these KPIs can be derived by combining black‐box bioprocess modeling with non‐linear regression for model parameter estimation. The presented pyFOOMB package enables a guided and flexible implementation of bioprocess models in the form of ordinary differential equation systems (ODEs). By building on Python as powerful and multi‐purpose programing language, ODEs can be formulated in an object‐oriented manner, which facilitates their modular design, reusability, and extensibility. Once the model is implemented, seamless integration and analysis of the experimental data is supported by various Python packages that are already available. In particular, for the iterative workflow of experimental data generation and subsequent model parameter estimation we employed the concept of replicate model instances, which are linked by common sets of parameters with global or local properties. For the description of multi‐stage processes, discontinuities in the right‐hand sides of the differential equations are supported via event handling using the freely available assimulo package. Optimization problems can be solved by making use of a parallelized version of the generalized island approach provided by the pygmo package. Furthermore, pyFOOMB in combination with Jupyter notebooks also supports education in bioprocess engineering and the applied learning of Python as scientific programing language. Finally, the applicability and strengths of pyFOOMB will be demonstrated by a comprehensive collection of notebook examples.
000889214 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000889214 588__ $$aDataset connected to CrossRef
000889214 7001_ $$0P:(DE-Juel1)168172$$aTenhaef, Niklas$$b1
000889214 7001_ $$0P:(DE-Juel1)129076$$aWiechert, Wolfgang$$b2
000889214 7001_ $$0P:(DE-Juel1)129050$$aNoack, Stephan$$b3$$eCorresponding author
000889214 773__ $$0PERI:(DE-600)2071199-2$$a10.1002/elsc.202000088$$gp. elsc.202000088$$n3-4$$p242-257$$tEngineering in life sciences$$v21$$x1618-2863$$y2021
000889214 8564_ $$uhttps://juser.fz-juelich.de/record/889214/files/document.pdf
000889214 8564_ $$uhttps://juser.fz-juelich.de/record/889214/files/elsc.202000088.pdf$$yOpenAccess
000889214 8767_ $$d2021-01-10$$eAPC$$jDEAL$$lDEAL: Wiley$$zBelegnr. 1200164094
000889214 909CO $$ooai:juser.fz-juelich.de:889214$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$popenCost$$pdnbdelivery
000889214 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165723$$aForschungszentrum Jülich$$b0$$kFZJ
000889214 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168172$$aForschungszentrum Jülich$$b1$$kFZJ
000889214 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129076$$aForschungszentrum Jülich$$b2$$kFZJ
000889214 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129050$$aForschungszentrum Jülich$$b3$$kFZJ
000889214 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000889214 9130_ $$0G:(DE-HGF)POF3-581$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vBiotechnology$$x0
000889214 9141_ $$y2021
000889214 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000889214 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-32
000889214 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-32
000889214 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-32
000889214 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-32
000889214 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-32
000889214 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENG LIFE SCI : 2018$$d2020-08-32
000889214 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-32
000889214 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-32
000889214 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-32
000889214 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889214 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-32
000889214 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-32
000889214 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-08-32
000889214 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-32
000889214 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000889214 980__ $$ajournal
000889214 980__ $$aVDB
000889214 980__ $$aI:(DE-Juel1)IBG-1-20101118
000889214 980__ $$aAPC
000889214 980__ $$aUNRESTRICTED
000889214 9801_ $$aAPC
000889214 9801_ $$aFullTexts