001     889218
005     20240313094930.0
037 _ _ |a FZJ-2021-00123
041 _ _ |a English
100 1 _ |a Denker, Michael
|0 P:(DE-Juel1)144807
|b 0
|e Corresponding author
111 2 _ |a EBRAINS Infrastructure Training
|c Online
|d 2020-11-17 - 2020-11-19
|w Online
245 _ _ |a 2nd Elephant User Workshop: Accelerate Structured and Reproducible Data Analysis in Electrophysiology
260 _ _ |c 2020
336 7 _ |a CONFERENCE
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Event
|2 DataCite
336 7 _ |a Conference / Event
|b event
|m event
|0 PUB:(DE-HGF)5
|s 1610379436_24638
|2 PUB:(DE-HGF)
336 7 _ |a OTHER
|2 ORCID
336 7 _ |a Generic
|0 31
|2 EndNote
520 _ _ |a This event delves into challenges in the reproducibility of neuroscience workflows dealing with classical electrophysiological activity data, such as spiking data or local field potentials, from experiment or simulation.The training will cover the complete cycle from generating structured and consistent data and metadata, accessing the data, pre-processing, setting up analysis workflows, up to the tracking of the provenance of the analysis results. In this context, the e-infrastructure services of EBRAINS offer a mature data, software and compute services ecosystem with community-driven tools developed in the framework of the Human Brain Project. In the first part of the workshop, participants will be trained in the use of tools covering the following topics: reading and manipulating electrophysiology data in Python using Neo [1] analysis of such data using Elephant [2] best practices for integrating metadata into your workflow to aid the analysis process best practices for structuring analysis results tracking data analysis pipelines using the HBP Knowledge Graph [3] collaboration and sharing documents using the HBP Collaboratory [4] In the second part of the workshop, participants will work together with a tutor in small groups, on their own data and on particular personal interests in the scope of the workshop. To this end, participants are asked to provide a small abstract describing the data set they would like to bring and work on (contents of the dataset, data format, data size...) and the topic they are interested in. The latter may, for example, be related to: annotating the dataset with metadata for collaboration and sharing, working with the dataset in the Neo framework, or performing a certain kind of analysis with the data set. The goal of each group is to get started addressing the topic, identify solutions together with the tutors, and implement a first prototype of the required functionality.
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 0
536 _ _ |a 571 - Connectivity and Activity (POF3-571)
|0 G:(DE-HGF)POF3-571
|c POF3-571
|f POF III
|x 1
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|x 2
700 1 _ |a Davison, Andrew
|0 P:(DE-Juel1)171568
|b 1
700 1 _ |a Ulianych, Danylo
|0 P:(DE-Juel1)178793
|b 2
|u fzj
700 1 _ |a Sprenger, Julia
|0 P:(DE-Juel1)161295
|b 3
|u fzj
700 1 _ |a Köhler, Cristiano
|0 P:(DE-Juel1)180365
|b 4
|u fzj
700 1 _ |a Gutzen, Robin
|0 P:(DE-Juel1)171572
|b 5
|u fzj
700 1 _ |a Kleinjohann, Alexander
|0 P:(DE-Juel1)176920
|b 6
|u fzj
700 1 _ |a Stella, Alessandra
|0 P:(DE-Juel1)171932
|b 7
|u fzj
700 1 _ |a Jurkus, Regimantas
|0 P:(DE-Juel1)179059
|b 8
|u fzj
700 1 _ |a Essink, Simon
|0 P:(DE-Juel1)176777
|b 9
|u fzj
700 1 _ |a Bouss, Peter
|0 P:(DE-Juel1)178725
|b 10
|u fzj
700 1 _ |a Grün, Sonja
|0 P:(DE-Juel1)144168
|b 11
|u fzj
856 4 _ |u https://www.humanbrainproject.eu/en/education/participatecollaborate/infrastructure-events-trainings/2nd-elephant-user-workshop/
909 C O |o oai:juser.fz-juelich.de:889218
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)144807
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)178793
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)161295
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)180365
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)171572
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)176920
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)171932
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)179059
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)176777
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)178725
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)144168
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Theory, modelling and simulation
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Connectivity and Activity
|x 1
914 1 _ |y 2020
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 1
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 2
980 _ _ |a event
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21