001     889234
005     20240711085604.0
024 7 _ |a 10.1007/s11666-020-01139-x
|2 doi
024 7 _ |a 1059-9630
|2 ISSN
024 7 _ |a 1544-1016
|2 ISSN
024 7 _ |a 2128/27400
|2 Handle
024 7 _ |a WOS:000601482000001
|2 WOS
037 _ _ |a FZJ-2021-00139
082 _ _ |a 670
100 1 _ |a Mauer, Georg
|0 P:(DE-Juel1)129633
|b 0
|e Corresponding author
245 _ _ |a Cold Gas Spraying of Nickel-Titanium Coatings for Protection Against Cavitation
260 _ _ |a Boston, Mass.
|c 2021
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1615803916_28656
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Cavitation erosion is a sever wear mechanism that takes place in hydrodynamic systems. Examples are turbine vanes of hydropower plants or components of valves and pumps in hydraulic systems. Nickel-titanium shape memory alloys (NiTi) are attractive materials for cavitation-resistant coatings because of their pronounced intrinsic damping mitigating cavitation-induced erosion. In this work, NiTi coatings were produced by cold gas spraying. The phase transformation behaviors of the powder feedstock and the as-sprayed coatings were investigated. Regarding the obtained transformation temperatures, the measured substrate temperatures during spraying rule out that either the shape memory effect or the pseudoelasticity of NiTi could affect the deposition efficiency under the applied conditions of cold gas spraying. Another potential effect is stress-induced amorphization which could occur at the particle–substrate interfaces and impair particle bonding by stress relaxation. Moreover, also oxide formation can be significant. Thus, the presence of amorphous phases and oxides in the near-surface zone of particles bounced off after impact was investigated. Oxidation could be confirmed, but no indication of amorphous phase was found. Besides, also the evolution of local microstrains implies that the substrate temperatures affect the deposition efficiency. These temperatures were significantly influenced by the spray gun travel speed.
536 _ _ |a 124 - Hochtemperaturtechnologien (POF4-124)
|0 G:(DE-HGF)POF4-124
|c POF4-124
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Rauwald, Karl-Heinz
|0 P:(DE-Juel1)129653
|b 1
|u fzj
700 1 _ |a Sohn, Yoo Jung
|0 P:(DE-Juel1)159368
|b 2
|u fzj
700 1 _ |a Weirich, Thomas E.
|0 P:(DE-Juel1)131029
|b 3
773 _ _ |a 10.1007/s11666-020-01139-x
|0 PERI:(DE-600)2047715-6
|p 131-144
|t Journal of thermal spray technology
|v 30
|y 2021
|x 1544-1016
856 4 _ |u https://juser.fz-juelich.de/record/889234/files/JTST_30_1_131_144.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:889234
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129633
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129653
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)159368
913 0 _ |a DE-HGF
|b Energie
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Methods and Concepts for Material Development
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-124
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Hochtemperaturtechnologien
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-08-20
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-20
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J THERM SPRAY TECHN : 2018
|d 2020-08-20
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-20
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2020-08-20
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-20
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-20
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-20
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-08-20
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-20
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21