000889238 001__ 889238
000889238 005__ 20220930130303.0
000889238 0247_ $$2doi$$a10.3390/nano11010194
000889238 0247_ $$2Handle$$a2128/27097
000889238 0247_ $$2pmid$$a33466639
000889238 0247_ $$2WOS$$aWOS:000610665700001
000889238 037__ $$aFZJ-2021-00143
000889238 082__ $$a540
000889238 1001_ $$0P:(DE-Juel1)145203$$aBouhassoune, Mohammed$$b0
000889238 245__ $$aFriedel Oscillations Induced by Magnetic Skyrmions: From Scattering Properties to All-Electrical Detection
000889238 260__ $$aBasel$$bMDPI$$c2021
000889238 3367_ $$2DRIVER$$aarticle
000889238 3367_ $$2DataCite$$aOutput Types/Journal article
000889238 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1615814034_26364
000889238 3367_ $$2BibTeX$$aARTICLE
000889238 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889238 3367_ $$00$$2EndNote$$aJournal Article
000889238 520__ $$aMagnetic skyrmions are spin swirling solitonic defects that can play a major role in information technology. Their future in applications and devices hinges on their efficient manipulation and detection. Here, we explore from ab-initio their nature as magnetic inhomongeities in an otherwise unperturbed magnetic material, Fe layer covered by a thin Pd film and deposited on top of Ir(111) surface. The presence of skyrmions triggers scattering processes, from which Friedel oscillations emerge. The latter mediate interactions among skyrmions or between skyrmions and other potential surrounding defects. In contrast to their wavelengths, the amplitude of the oscillations depends strongly on the size of the skyrmion. The analogy with the scattering-off atomic defects enables the assignment of an effective scattering potential and a phase shift to the skyrmionic particles, which can be useful to predict their behavior on the basis of simple scattering frameworks. The induced charge ripples can be utilized for a noninvasive all-electrical detection of skyrmions located on a surface or even if buried a few nanometers away from the detecting electrode.
000889238 536__ $$0G:(DE-HGF)POF4-521$$a521 - Quantum Materials (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000889238 536__ $$0G:(DE-Juel1)jias17_20190501$$aFirst-principles investigation of single magnetic nano-skyrmions (jias17_20190501)$$cjias17_20190501$$fFirst-principles investigation of single magnetic nano-skyrmions$$x1
000889238 588__ $$aDataset connected to CrossRef
000889238 7001_ $$0P:(DE-Juel1)130805$$aLounis, Samir$$b1$$eCorresponding author
000889238 773__ $$0PERI:(DE-600)2662255-5$$a10.3390/nano11010194$$gVol. 11, no. 1, p. 194 -$$n1$$p194$$tNanomaterials$$v11$$x2079-4991$$y2021
000889238 8564_ $$uhttps://juser.fz-juelich.de/record/889238/files/Invoice_MDPI_nanomaterials-1067677_1385.43EUR.pdf
000889238 8564_ $$uhttps://juser.fz-juelich.de/record/889238/files/nanomaterials-11-00194.pdf$$yOpenAccess
000889238 8767_ $$81067677$$92021-01-11$$d2021-01-14$$eAPC$$jZahlung erfolgt$$pnanomaterials-1067677$$zBelegnr. 1200161955
000889238 909CO $$ooai:juser.fz-juelich.de:889238$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000889238 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130805$$aForschungszentrum Jülich$$b1$$kFZJ
000889238 9130_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000889238 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000889238 9141_ $$y2021
000889238 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-06
000889238 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-06
000889238 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000889238 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-06
000889238 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOMATERIALS-BASEL : 2018$$d2020-09-06
000889238 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-06
000889238 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-06
000889238 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-06
000889238 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-06
000889238 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-06
000889238 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-06
000889238 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889238 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-06
000889238 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-06
000889238 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-06
000889238 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-06
000889238 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-09-06
000889238 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-06
000889238 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000889238 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000889238 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000889238 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000889238 980__ $$ajournal
000889238 980__ $$aVDB
000889238 980__ $$aI:(DE-Juel1)IAS-1-20090406
000889238 980__ $$aI:(DE-Juel1)PGI-1-20110106
000889238 980__ $$aI:(DE-82)080009_20140620
000889238 980__ $$aI:(DE-82)080012_20140620
000889238 980__ $$aAPC
000889238 980__ $$aUNRESTRICTED
000889238 9801_ $$aAPC
000889238 9801_ $$aFullTexts