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Abstract We extend the recently developed Jacobi no-

core shell model to hypernuclei. Based on the coeffi-

cients of fractional parentage for ordinary nuclei, we

define a basis where the hyperon is the spectator parti-

cle. We then formulate transition coefficients to states

that single out a hyperon-nucleon pair which allow us

to implement a hypernuclear many-baryon Hamiltonian

for p-shell hypernuclei. As a first application, we use

the basis states and the transition coefficients to calcu-

late the ground states of 4
ΛHe, 4

ΛH, 5
ΛHe, 6

ΛHe, 6
ΛLi, and

7
ΛLi and, additionally, the first excited states of 4

ΛHe,
4
ΛH, and 7

ΛLi. In order to obtain converged results, we

employ the similarity renormalization group (SRG) to

soften the nucleon-nucleon and hyperon-nucleon inter-

actions. Although the dependence on this evolution of

the Hamiltonian is significant, we show that a strong
correlation of the results can be used to identify pre-

ferred SRG parameters. This allows for meaningful pre-

dictions of hypernuclear binding and excitation ener-

gies. The transition coefficients will be made publicly

available as HDF5 data files.

Keywords Hyperon-nucleon interactions · Hyper-

nuclei · Forces in hadronic systems and effective

interactions · Shell model

PACS 13.75.Ev · 21.80.+a · 21.30.Fe · 21.60.Cs

1 Introduction

After more than 65 years of research on hypernuclei, our

knowledge of the interaction of hyperons with nucleons
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or with other hyperons still remains on a modest level.

This situation is rather unsatisfactory given the impor-

tant role hyperons play for various aspects of nuclear

physics as well as for astrophysics [1–5]. For example, as

extensively discussed in recent years, the hyperon inter-

action could have a significant impact on the properties

of neutron stars [3–5]. The reason for the large uncer-

tainty is the tremendous difficulty to perform scatter-

ing experiments involving hyperons and the fact that

no two-baryon bound state has been found so far, ex-

cept for the well known deuteron. An important source

of information has been the spectroscopy of hypernu-

clei [6]. New experiments are planned at facilities like

J-PARC, FAIR, MAMI and JLab [7–12], some to study

the scattering of hyperons on nucleons, but mostly mea-

surements of bound states of ordinary nuclei with hy-

perons. Such new and very probably more precise data

will not only be phenomenologically interesting, but

also enable us to explore the underlying interactions

in more detail. The latter is now possible because even

fairly complex systems can be treated theoretically on

a microscopic level, thanks to improved algorithms and

increasing computational resources. Indeed, nowadays,

one can solve the Schrödinger equation for hypernuclei

up to the p-shell based on realistic and rather elabo-

rate baryon-baryon interactions [13–15]. Thus, it has

become feasible to study detailed features of the bary-

onic forces, like the spin-dependence of hypernuclear

interactions, which are inaccessible in direct scattering

experiments. With these theoretical advances, the new

data on hypernuclei will definitely provide valuable in-

put to pin down the underlying interactions. Eventu-

ally, the hypernuclear data could be directly utilized in

fits of interaction parameters.

However, a direct use of hypernuclear data requires

solving the hypernuclear many-body problem many
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times and, therefore, calls for a very efficient calculation

scheme. Several methods have been employed in the

past to study hypernuclei. For local interactions, config-

uration space methods, e.g. hyperspherical harmonics,

Green’s function Monte Carlo, expansion in Gaussians

or stochastic variational method (SVM), have been suc-

cessfully used to predict properties of light hypernuclei

[16–20]. For very light systems, that goal can be like-

wise achieved by solving the Faddeev- or Yakubovsky

equations in momentum space [15,21–25]. Those meth-

ods allow one also to deal with non-local two-body in-

teractions, but it is difficult to extend the approaches

to larger systems. Alternatively, shell model calcula-

tions have been a quite successful tool to understand

properties of hypernuclei, in particular the energy level

splittings [26–29]. However, that approach requires spe-

cific effective interactions that are not easily related to

free-space baryon-baryon interactions. The same disad-

vantage also holds for density functional approaches,

which have been applied to rather complex hypernu-

clei [30,31]. Recently, nuclear lattice effective field the-

ory (NLEFT) has been extended to hypernuclei using

the impurity lattice Monte Carlo technique [32]. Al-

though this first study has been performed with some-

what simplified (spin-independent) interactions, that

method promises the application of free-space interac-

tions up to medium-heavy hypernuclei.

One specifically interesting approach to tackle bound

baryon systems is the no-core shell model (NCSM) [33].

An essential tool is here the representation in terms

of a harmonic oscillator (HO) basis. There are sev-

eral variants of the approach. In most applications so

far, a single-particle Slater-determinant basis has been

chosen. This realization has been very successfully em-

ployed for studying ordinary nuclei and even hypernu-

clei [14, 34–36], especially, when the so-called impor-

tance truncation is implemented [14,35,36]. Highly ac-

curate results for binding energies, excitation energies

and even radii have been obtained. Generally, the prob-

lem becomes very high dimensional, not least because

the center-of-mass (CM) motion cannot be separated

off and because angular momentum and isospin conser-

vation cannot be exploited to limit the basis size.

Such a complication can be avoided by using a Ja-

cobi relative coordinate basis. This, however, requires a

very tedious antisymmetrization for the nucleonic states

[37,38]. Nevertheless, the method can be advantageous

when many calculations are required for variations of

the underlying interactions, e.g. in fitting procedures,

since the antisymmetrization and other preparatory steps

can be accomplished independently of the interactions.

The final step of the calculation itself can then be much

more efficiently performed than in the standard NCSM

so that it becomes feasible to solve the problem hun-

dreds or even thousands of times or with limited compu-

tational resources. The work of Gazda et al. [14,34] has

already been employing this Jacobi NCSM (J-NCSM)

for s-shell hypernuclei. It is the main aim of the present

work to extend the J-NCSM approach to p-shell hyper-

nuclei. The new approach is then used to study in more

detail the 4
ΛHe, 5

ΛHe, 6
ΛLi and 7

ΛLi systems based on

the next-to-leading order (NLO) hyperon-nucleon (YN)

interaction derived within chiral effective field theory

(EFT) [25, 39, 40]. For interactions from chiral EFT, it

is possible to obtain reliable uncertainty estimates of

the results [15, 25], utilizing different orders of the chi-

ral expansion and/or by exploiting the regulator (cut-

off) dependence of these interactions (where the latter

method provides only a lower limit for the error). For

ordinary nuclei, such estimates are now regularly per-

formed [41,42].

As usual, the NCSM requires a further softening

of the nucleon-nucleon (NN) and YN interactions. To

this aim, we apply the similarity renormalization group

(SRG) to the NN and YN potentials [43,44]. This method

has the advantage that an effective interaction can be

systematically derived from the starting NN and YN

interactions, which can then be equally well employed

in momentum space and HO space. The SRG evolu-

tion gives rise also to so-called induced three-body and

many-body forces. In the present study, we will not

take into account such induced many-body forces (for

the application of the SRG induced YNN forces see

[35, 36, 45]). Therefore, a part of this work is devoted

to study the SRG dependence of the binding energies,

excitation energies and Λ-separation energies.

In Section 2, we start with a definition of our basis

states based on the totally antisymmetrized nucleonic

states defined in [38]. Practical calculations can only

be performed when the transition matrix elements to

states that single out NN or YN pairs are known. The

calculation of these matrix elements is explained in de-

tail in Section 3. This already concludes the description

of the Jacobi NCSM. As mentioned above, for explicit

calculations, we, however, also need soft interactions.

In Section 4, we therefore discuss the basic features of

chiral interactions and their SRG evolvement including

the impact on the binding energy for 3
ΛH when the SRG-

induced three-baryon force (3BF) is neglected. For this

study, we will make use of solutions based on the Fad-

deev equations. The application of the Jacobi NCSM

then follows in Section 5. We first present a detailed

benchmark for 4
ΛH/4ΛHe to Yakubovsky results and then

continue towards A = 5 to 7 hypernuclei. Our conclu-

sions are finally given in Section 6. Some technicalities

are relegated to the appendices.
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2 NCSM basis in Jacobi coordinates

The translationally invariant many-body Hamiltonian

of a system consisting of (A− 1) nucleons and a single-

strangeness hyperon Y (Y = Λ or Σ) in Jacobi relative

coordinates can be written as follows

H = HS=0 +HS=−1

=

A−1∑
i<j=1

( 2p2ij
M(tY )

+ V NNij

)

+

A−1∑
i=1

(mN +m(tY )

M(tY )

p2iY
2µNY

+ V Y NiY

+
1

A− 1

(
m(tY )−mΛ

))
. (1)

Here, mN , m(tY ) and µNY are nucleon-, hyperon-, and

their reduced masses, respectively, which we define by

mN = 2mnmp/(mn + mp), m(tY = 0) = mΛ, and

m(tY = 1) = (mΣ+ + mΣ− + mΣ0)/3. For simplicity,

we assume isospin symmetry. A generalization to un-

equal masses within the isospin multiplet of nucleons

and of Σ’s is straightforward but will not be consid-

ered here. The total rest mass of the system, M(tY ) =

(A− 1)mN +m(tY ), depends explicitly on the hyperon

isospin tY because an explicit Λ-Σ conversion is al-

lowed. The term m(tY ) − mΛ then accounts for the

difference in the rest masses of the two hyperons. The

relative Jacobi momenta of NN and YN pairs,

pij =
1

2
(ki − kj), (2)

and

piY =
m(tY )

mN +m(tY )
ki −

mN

mN +m(tY )
kY (3)

are linear combinations of the momenta ki and kY of

the i-th nucleon and the hyperon, respectively. V NNij

and V Y NiY are the corresponding NN and YN potentials.

Since hyperons (Λ, Σ) and nucleons are distinguish-

able, hypernuclear basis functions, denoted as

|α∗(Y )〉, can be formed by coupling the hyperon HO

states |Y 〉, which describe the relative motion of a sin-

gle hyperon Y with respect to the CM of the (A− 1)N

core, to the fully antisymmetrized states of the core

|α(A−1)N 〉∣∣α∗(Y )(NJT )
〉

= |α(A−1)N 〉 ⊗ |Y 〉

= |NJT, α(A−1)N nY IY tY ;

(JA−1(lY sY )IY )J, (TA−1tY )T 〉 ≡ | 〉, (4)

where α(A−1)N stands for a complete set of all nec-

essary quantum numbers characterizing the fully an-

tisymmetrized states of an (A − 1)N system: the to-

tal HO energy quantum number NA−1, total angular

momentum JA−1, isospin TA−1, and the state indices

ζA−1 (that distinguish different |α(A−1)N 〉 states with

the same set of NA−1, JA−1 and TA−1). These antisym-

metrized states for A ≥ 4 systems are computed itera-

tively starting from the naturally antisymmetrized basis

for two nucleons, for more detail we refer to Ref. [38].

Here, the superscript (∗Y ) represents the separation of

the hyperon Y from the (A − 1)N core. The hyperon

states |Y 〉 are described by a similar set of quantum

numbers: the HO energy quanta nY , the orbital angu-

lar momentum lY and spin sY which are coupled to

the relative angular momentum IY , and the isospin tY
as well. The last line in Eq. (4) defines the ordering

in which the quantum numbers of the two subclus-

ters are combined to form the total angular momen-

tum and total isospin of the system, J and T , respec-

tively, whose values are given by the physical state of

interest. Also, for practical realization, the total HO

quantum numbers N of the basis states are constrained

by the maximum number of the single-particle oscilla-

tors Nmax (also referred to as the model space size),

i.e. N = NA−1 + 2nY + lY ≤ Nmax. The state in-

dex ζ that distinguishes different basis states |α∗(Y )〉
with the same N , J and T is omitted for simplifying

the notation. Finally, on the right-hand side of Eq. (4),

the graphical representation of the basis is shown. The

small red circle denotes a hyperon spectator while the

big black circle represents the system of (A− 1)N.

3 Separation of NN and YN pairs

With the basis defined in Eq. (4), the matrix elements

of the Hamiltonian in Eq. (1) now read

〈α∗(Y )|H|α′∗(Y )〉 = 〈α∗(Y )|HS=0|α′∗(Y )〉

+ 〈α∗(Y )|HS=−1|α′∗(Y )〉. (5)

The basis states |α∗(Y )〉 are however not suitable for

evaluating the HS=0 and HS=−1 matrix elements as

they do not depend explicitly on the relative coordi-

nates of the involved NN or YN pairs. To facilitate the

evaluation of Eq. (5), we expand |α∗(Y )〉 in two ad-

ditional bases of intermediate states |
(
α∗(2)

)∗(Y )〉 and

|α∗(Y N)〉 that explicitly single out the active NN or a

YN pairs, respectively. Also the superscripts represent

subsystems that are separated out. Clearly, the former

states |
(
α∗(2)

)∗(Y )〉 are needed for evaluating the first

part in Eq. (5) involving HS=0, while the latter ones

are necessary for the evaluation of the second part that

involves HS=−1.

The first set of auxiliary states |
(
α∗(2)

)∗(Y )〉 can be

directly constructed by coupling the hyperon states |Y 〉,
depending on Jacobi coordinates of Y relative to the
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CM of (A-1)N, to the (A − 1)N states that consist of

antisymmetrized subclusters of (A−3)N and 2N. In the

notation of Ref. [38], this reads∣∣(α∗(2))∗(Y )〉
= |α∗(2)(A−1)〉 ⊗ |Y 〉

=
∣∣ÑJT, α∗(2)(A−1) ñY ĨY t̃Y ;

(J
∗(2)
A−1(l̃Y sY )ĨY )J, (T

∗(2)
A−1t̃Y )T

〉
≡
∣∣ 〉

. (6)

Here, α
∗(2)
(A−1) stands for the total HO energy quantum

number N
α
∗(2)
(A−1)

, the total angular momentum J
∗(2)
A−1,

isospin T
∗(2)
A−1 and state index ζ

∗(2)
A−1, as introduced in

[38]. Naturally, the total HO energy quantum num-

ber Ñ in Eq. (6) is also restricted by Ñ ≤ Nmax.

With the graphical representations of |
(
α∗(2)

)∗(Y )〉 and

|α∗(Y )〉, one can quickly relate the expansion coefficients〈
α∗(Y )|

(
α∗(2)

)∗(Y )〉
to the transition coefficients of the

(A− 1)N system 〈 |
〉
A−1,

〈α∗(Y )|
(
α∗(2)

)∗(Y )〉 = 〈 | 〉

= δspectator〈 |
〉
A−1, (7)

for which an explicit expressions has been derived in

[38,46]. The Kronecker symbol δspectator is to ensure the

conservation of the quantum numbers of the hyperon

and the (A− 1)N system,

δspectator = δNÑ δY δcore,

δY = δnY ñY
δlY l̃Y δIY ĨY δtY t̃Y ,

δcore = δNA−1N∗(2)A−1

δ
JA−1J

∗(2)
A−1

δ
TA−1T

∗(2)
A−1

.

Hence, the matrix elements of the nucleonic Hamil-
tonian 〈α∗(Y )|HS=0|α′∗(Y )〉 now become

〈α∗(Y )|HS=0|α′∗(Y )〉
= 〈 | 〉〈 |HS=0| 〉〈 | 〉

= δspectator〈 | 〉〈 |HS=0| 〉〈 | 〉, (8)

with summations over intermediate states | 〉 being

implied. The remaining unknown term in Eq. (8) is

simply the matrix elements of HS=0 in the basis of

(A− 1) nucleons.

Similarly, in order to construct the intermediate

states |α∗(Y N)〉, one combines the states describing a

YN pair, |Y N〉, with the antisymmetrized basis of an

(A− 2)N system, |α(A−2)〉

|α∗(Y N)〉 = |αY N 〉 ⊗ |αA−2〉

= |NJ T , αY N nλλαA−2; ((lY N (sY sN )SY N )

JY N (λJA−2)Iλ)J , ((tY tN )TY NTA−2)T 〉
≡
∣∣ 〉

. (9)

Again, |αY N 〉 and |αA−2〉 represent the complete sets of

quantum numbers characterizing the states of the two-

body hyperon-nucleon and the (A − 2)N subsystems.

Note that, in contrast to two-nucleon states, there is no

antisymmetry requirement for |αY N 〉. The relative mo-

tion of the (A−2)N cluster with respect to the separated

out YN pair is specified by the HO energy number nλ
and the orbital angular momentum λ. For evaluating

the overlap 〈α∗(Y )|α∗(Y N)〉, we need to exploit another

set of auxiliary states |
(
α∗(1)

)∗(Y )〉 in which a hyperon

and a nucleon are explicitly singled out∣∣(α∗(1))∗(Y )〉
= |α∗(1)A−1〉 ⊗ |Y 〉

= |ÑJT, α∗(1)(A−1) nY IY t̃Y ;

(J
∗(1)
A−1(lY sY )IY )J, (T

∗(1)
A−1t̃Y )T 〉

≡
∣∣ 〉

. (10)

With the help of Eq. (10), the transition coefficients

〈α∗(Y )|α∗(Y N)〉 can be computed in two steps as follows

〈α∗(Y )|α∗(Y N)〉 = 〈 | 〉〈 | 〉
= δspectator〈 | 〉A−1〈 | 〉. (11)

Here also an explicit summation over the auxiliary states

|
(
α∗(1)

)∗(Y )〉 = | 〉 is assumed. Clearly, the first over-

lap 〈 | 〉 is essentially given by the coefficients of

fractional parentage (cfp) 〈 | 〉A−1 of an (A − 1)N

system, which basically determine the antisymmetrized

basis of (A−1) nucleons in terms of the |α∗(1)(A−1)〉 states

[38], and is therefore well known. Hence, only the second

transition 〈 | 〉 in Eq. (11) needs to be taken care

of. This transition is a transformation between different

Jacobi coordinates and therefore given by the general

coordinate transformation formula derived in [38]. We

skip the detailed derivation but provide the final expres-

sion in Appendix A. Finally, a summation over the in-

termediate states | 〉 is carried out. Let us again stress

that both, the transition coefficients 〈α∗(Y )|
(
α∗(2)

)∗(Y )〉
and 〈α∗(Y )|α∗(Y N)〉, are independent of the HO fre-

quency (HO-ω) as well as of the interactions employed.

They can therefore be prepared in advance and stored

in the machine-independent HDF5 format so that the

parallel input and output can be performed most effi-

ciently. The corresponding files can be found at [47].

Once the transition coefficients 〈α∗(Y )|α∗(Y N)〉 are

known, the single-strangeness Hamiltonian matrix ele-

ments 〈α∗(Y )|HS=−1|α′∗(Y )〉 are computed similarly as

in Eq. (8):

〈α∗(Y )|HS=−1|α′∗(Y )〉
= 〈 | 〉〈 |HS=−1| 〉〈 | 〉. (12)

Thus, the evaluation of the matrix elements

〈α∗(Y )|HS=0|α′∗(Y )〉 and 〈α∗(Y )|HS=−1|α′∗(Y )〉 can be
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traced back to multiplications of very large but sparse

matrices. As usual, we solve the eigenvalue problem us-

ing the Lanczos method so that these matrix multipli-

cations must be computed again and again. Therefore,

an efficient method to evaluate such product matrices

is extremely important. More details on the technical

realization are given in Ref. [48].

4 SRG evolution for chiral NN and YN

interactions

We follow the formalism initially applied by Wegner [43]

to solid state physics and later employed by Bogner,

Furnstahl and Perry [49] to nuclear interactions, which

defines the SRG evolution in terms of a unitary trans-

formation depending on a flow parameter s

Hs = UsH0U
†
s ≡ Trel + Vs. (13)

Here H0 = Hs=0 is the initial (bare) Hamiltonian and

Trel is the intrinsic relative kinetic operator that also

includes the mass difference term when one allows for

particle conversions in the Hamiltonian. The parame-

ter s has the unit of energy-2 and varies continuously

from zero to ∞. Note that, although the flow equa-

tion is solved with respect to s, for characterizing the

SRG-evolved potentials, we will utilize a more intuitive

variable

λ =

(
4µ2

s

)1/4

, (14)

with µ = mN mΛ/(mN +mΛ) for YN interactions and

µ = mN/2 for NN forces. A similar definition for λ was

introduced in [49]. λ can be (to some approximation)

identified with the width of the band for which the SRG

evolved matrix elements of the interaction are non-zero.

By differentiating the transformation Eq. (13), one ob-

tains the evolution equation for the Hamiltonian

dHs

ds
=
dVs
ds

= [ηs, Hs] (15)

where the generator

ηs =
dUs
ds

U†s = −η†s (16)

is an anti-hermitian operator. Usually, ηs is taken as

a commutator of an hermitian operator Gs with the

Hamiltonian, ηs = [Gs, Hs]. The operator Gs is often

chosen such that the evolved Hamiltonian Hs possesses

a desired form. For our purpose of decoupling the low-

and high-momentum components, the simplest, but yet

very useful generator, is the relative kinetic energy ex-

cluding the mass shift. We take

Gs =
p2

2µ
(17)

with p being the particles relative momentum. The flow

equation Eq. (15) now becomes an operator equation

dVs
ds

=
[[ p2

2µ
, Vs

]
, Hs

]
. (18)

This is then solved in a partial-wave relative momentum

basis

|p (ls)J ; t1mt1S1 t2mt2S2〉 ≡ |pα〉, (19)

where l is the orbital angular momentum that combines

with the total spin s to form the total angular momen-

tum J . Further, (ti,mti , Si)i=1,2 are sets of the intrin-

sic quantum numbers that distinguish different particle

states: isospin, isospin projection and strangeness. The

normalization of the basis states Eq. (19) simply reads∑
α

∫
dpp2 |pα〉〈pα| = 1. (20)

After projecting Eq. (18) onto the basis Eq. (19), one

obtains the flow equation in form of an integro-differential

equation

dV αα
′

s (pp′)

ds
=
[
Tαrel(p)

p′2

2µα′
+ Tα

′

rel(p
′)
p2

2µα

−Tαrel(p)
p2

2µα
− Tα

′

rel(p
′)
p′2

2µα′

]
V αα

′

s (pp′)

+
∑
α̃

∫ ∞
0

dkk2
[ p2

2µα
+

p′2

2µα′
− k2

µα̃

]
×V αα̃s (pk)V α̃α

′

s (kp′). (21)

Here, the reduced mass µ and Trel depend explicitly

on the particle states α since physical masses are em-

ployed for the SRG evolution. We solve the flow equa-

tion Eq. (21) numerically using a non-equidistant mo-

mentum grid characterized by the ultraviolet momen-

tum cutoff pmax and N Gauss-Legendre integration

points pn with corresponding weights wn(n = 1, · · ·N).

Since the initial potentials often vary at low momenta

faster than at high momenta, it is useful to define the

grid such that it is sparse at high momenta but denser

at the low-momentum region.

Discretizing the flow equation leads to a set of cou-

pled differential equations which is then solved using

the advanced multi-step Adams PECE (Predict Esti-

mation Correct Estimation) method [50]. The SRG-

evolution of the YN interaction NLO19 with a regulator

of ΛY = 650 MeV is illustrated in Fig. 1. The contour
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Fig. 1 Contour plot of the YN potential matrix elements for
all possible particle channels with charge Q = 0 and in the
1S0 partial wave. The potentials are evolved to four differ-
ent values of the YN flow parameter: λY N = 98 fm-1 (first
column, almost non-evolved), λY N = 3 fm-1 (second col-
umn, slightly evolved), λY N = 1.6 fm-1 (third column) and
λY N = 0.868 fm-1 (last column). The initial potential is the
YN NLO interaction with a regulator of ΛY = 650 MeV.

plots are the potentials for all the particle channels with

zero charge and in the 1S0 partial wave. The initial

potential NLO19(650) is evolved to four different val-

ues of the YN flow parameter: λY N = 98 fm-1 (almost

non-evolved, bare interaction), λY N = 3 fm-1 (slightly

evolved), λY N = 1.6 fm-1 (commonly used) and the ex-

treme case λY N = 0.868 fm-1. As expected, the SRG

evolution steadily drives the potentials toward a diag-

onal form decoupling the low- and higher-momentum

states. While the bare NLO19 shows a strong repulsive

behavior for almost all particle channels over the entire

momentum range, the SRG-evolved potentials become

slightly attractive at low momenta but remain repulsive

at high momenta.

We explicitly checked that NN and YN scattering

observables remain unchanged by this unitary transfor-

mation. At this point, we neglect induced three-baryon

forces (3BFs). In this approximation, the evolution of

NN and YN forces is not linked to each other and we

can choose λNN and λY N independently.

1 2 3 4 5 6
YN[fm 1]

0.05

0.10

0.15

0.20

0.25

0.30

E
[M

eV
]

B

Fig. 2 Dependence of BΛ(3ΛH) on λY N for λNN = 1.6 (blue
+) and 2.4 fm−1 (orange x). Starting point of the NN SRG
evolution is the Idaho-N3LO(500) interaction [51]. For YN,
the NLO19(600) interaction [25] is used. The black solid hor-
izontal line and cyan band indicates the experimental value
[52] and its uncertainty. The blue dashed and orange dash-
dotted lines are results for the bare YN interaction and for
λNN = 1.6 and 2.4 fm−1, respectively.

As a first application, we apply the SRG transformed

interactions to obtain binding energies E(3ΛH) and the

Λ separation energies BΛ(3ΛH) = E(2H) - E(3ΛH) of 3
ΛH.

Since the 3
ΛH is predominantely a weakly bound Λ to

a significantly stronger bound deuteron, it is very diffi-

cult to obtain converged results for the binding energies

using the NCSM. Therefore, for this study, we use so-

lutions based on Faddeev equations (see Appendix B).

With this method, an accuracy of 1 keV for these ener-

gies is routinely achieved.

In Fig. 2, BΛ(3ΛH) is shown for one typical choice

of the NN and YN starting interactions. It can be seen

that the dependence on the flow parameter of the NN

interaction is of the order of 20 keV. But, unfortunately,

it is also clear that the dependence on λY N is rather

significant, indicating a non-negligible contribution of

SRG induced three-baryon interactions. We will discuss

later in Section 5.5 how this issue could be possibly re-

solved without explicitly taking the induced 3BFs into

account. Note that, for λY N . 1.0 fm−1, the separation

energy is in fair agreement with experiment and the re-

sult of calculations based on the bare YN interaction.

5 Results

As first application of the Jacobi NCSM, we employ the

approach to investigate some interesting hypernuclear

systems up to the p-shell. Since 3BFs are not included in

the current study, our primary focus will be the impact

of different chiral NN and YN interactions as well as

their SRG evolution on the separation energies. For the
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NN interaction we consider the next-to-next-to-next-

to-leading order potential from the Idaho group with a

regulator of ΛN = 500 MeV (Idaho-N3LO(500)) [51],

and the high-order semilocal momentum-space (SMS)

potential regularized with ΛN = 450 MeV

(SMS N4LO+(450)) [53]. Two chiral potentials at next-

to-leading order, namely NLO13 and NLO19 [25, 40]

with the range of regulators ΛY = 550 − 650 MeV,

are chosen for the YN interaction. In all calculations,

contributions of the NN and YN potentials in partial

waves higher than J = 6 are left out. The high partial

waves affect the energies only by a few keV. For simplic-

ity, the electromagnetic part of the NN interaction [54]

as well as the Coulomb point-like contribution in some

YN channels are not included in the SRG evolution, but

only added afterwards. We observed that evolving these

interactions changes hypernuclear binding energies only

by few keV.

5.1 Extrapolation of the binding energies

Due to the finite truncation in the single-particle Hilbert

space, results from the NCSM calculations are depen-

dent on the HO frequency ω as well as on the model

space size N . Both parameters can be understood in

terms of an ultraviolet and infrared cutoff. Based on

this insight, theoretically founded extrapolations can be

performed with respect to the infrared cutoff [55–58].

This is especially interesting for the calculation of ex-

pectation values of long range operators, like radii, be-

cause the infrared dependence is pronounced in this

case. Since we will be most concerned about the ultravi-

olet dependence, we follow here a simple, but practical

approach.

In order to obtain converged binding energies, and,

at the same time, to be able to systematically estimate

the numerical uncertainties, we follow a two-step pro-

cedure as employed in [38]. The first step is to mini-

mize (eliminate) the HO-ω dependence. For each model

space size N , we first calculate the binding energies,

E(ω,N ), for a range of HO-ω and then utilize the fol-

lowing ansatz,

E(ω,N ) = EN + κ(log(ω)− log(ωopt))
2, (22)

to extract the lowest binding energy EN for the con-

sidered model space N and the corresponding optimal

HO frequency ωopt. As an example, we show in Fig. 3

the HO-ω dependence of E(4ΛHe, 0+) for model space

N varying from 10 to 22. We notice that the optimal

frequency ωopt shifts to lower values as the model space

size N increases, and the ω-dependence of E(ω,N ) flat-

tens out as we move forward to the largest model space

Nmax.

10 12 14 16 18 20 22 2410 12 14 16 18 20 22 2410 12 14 16 18 20 22 2410 12 14 16 18 20 22 2410 12 14 16 18 20 22 2410 12 14 16 18 20 22 2410 12 14 16 18 20 22 24
 [MeV]

10.75

10.70

10.65

10.60

10.55

10.50

10.45

E 
[M

eV
]

Fig. 3 E(4ΛHe, 0+) as a function of HO ω. Solid lines with
different colors and symbols represent numerical results for
different model spaces N . Dashed lines are obtained using
the ansatz Eq. (22). The calculations are based on the Idaho-
N3LO(500) (NN) and NLO19(600) (YN) interactions, SRG-
evolved to λNN = 1.6 fm-1 and λY N = 2.00 fm-1, respectively.

In the second step, the binding energies with the

minimal ω-dependence, EN , are used for extrapolating

to a converged result in infinite model space assuming

an exponential ansatz

EN = E∞ +Ae−BN . (23)

The confidence interval for each EN in Eq. (23) can be

determined either from the spread of the energy in the

vicinity of ωopt or from the slope between two successive

energies, EN and EN+2. The latter is mostly employed

in our calculations. It should however be stressed that

the two ways of assigning confidence intervals are prac-

tically equivalent and lead to the same results within

the numerical uncertainties. The determined intervals

will serve as a weight for each EN in the model-space

fit using the ansatz in Eq. (23). The model-space ex-

trapolation for E(4ΛHe, 0+) is illustrated in Fig. 4. The

final uncertainty (shaded area) is then taken as the dif-

ference between the extrapolated E∞ and ENmax.

In hypernuclear physics, we are generally more in-

terested in the so-called Λ−separation energy,BΛ, which

is defined as the difference between the binding ener-

gies of a hypernucleus and of the corresponding parent

nucleus. Hence,

BΛ(4ΛHe) = E(3He)− E(4ΛHe) . (24)

Following the definition Eq. (24), in principle, one can

subtract the separation energy for each ω and N ,

BΛ(4ΛHe, ω,N ) = E(3He, ω,N )− E(4ΛHe, ω,N ) , (25)

and then employ the described two-step procedure to

extrapolate the converged BΛ. We have however ob-

served that for each model space size N , the useful

ranges of ω and hence the optimal frequencies ωopt for
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Fig. 4 N -dependence of E(4ΛHe, 0+). The symbols and uncer-
tainties represent results extracted from Eq. (22). The black
line is obtained using Eq. (23). The (red) straight line with
shaded area indicates the converged result and its uncertainty.
Same description of interactions as in Fig. 3.

the nuclear core 3He and hypernucleus 4
ΛHe are some-

what different. It is therefore advisable to eliminate the

ω-dependence of the binding energies of 3He and 4
ΛHe

separately. After that, one subtracts BΛ(N ) for every

model space N

BΛ(4ΛHe,N ) = E(3He,N )− E(4ΛHe,N ) , (26)

and utilizes the ansatz Eq. (23) to extract the converged

result for BΛ(4ΛHe) together with its uncertainty, see

Fig. 5. Clearly, the Λ-separation energy BΛ(4ΛHe) ex-

hibits a slightly faster convergence pattern as that of

the binding energy E(4ΛHe). This tendency is also ob-

served for all other investigated hypernuclei. For com-

pleteness, the model-space extrapolations of BΛ(5ΛHe)

and BΛ(7ΛLi, 1/2+) are shown in Fig. 6.

It is stressed that there is no fundamental reason

that the separation energies monotonically converge with

increasing model space, but we observed this monotonic

behavior in all systems computed so far. This moti-

vated the use of Eq. (23) for the extrapolation of the

separation energies. Note that the resulting energies are

consistent with results of Fadeev-Yakubovsky (FY) cal-

culations and/or with a fit of the N dependence to a

constant. The latter way of fitting is less preferable since

it generally leads to larger uncertainties.

Let us finally emphasize that, although the described

procedure is computationally rather expensive, it al-

lows for a systematic and, most importantly, reliable

extraction of the final results of the NCSM calcula-

tions. Within the Jacobi-basis formalism such a robust

extrapolation is feasible and yields plausible results for

light p-shell hypernuclei as one will see in the following

sections.

10 12 14 16 18 20 22

3.18

3.16

3.14

3.12

3.10

3.08

B
[M

eV
]

Fig. 5 N -dependence of BΛ(4ΛHe, 0+). Same description as
in Fig. 4.

λY N 0+ 1+

[fm-1] J-NCSM FY J-NCSM F-Y

1.6 -10.700(1) -10.70 -9.863(3) -9.86

3.0 -10.751(6) -10.77 -9.81(1) -9.82

14.0 -9.27(8) -9.31(3)

Table 1 Ground- and excited-state energies (in MeV) of
4
ΛHe obtained from the Faddeev-Yakubovsky (FY) and J-
NCSM approaches. The calculations are based on the Idaho-
N3LO(500) NN interaction, SRG-evolved to λNN = 1.6 fm-1,
and the NLO19(600) YN potential, evolved to three different
SRG flow values, namely λY N = 1.6, 3.0 and 14.0 fm-1.

5.2 Benchmark results for 4
ΛHe

As mentioned above, to validate the J-NCSM we bench-

mark our converged results with the binding energies
obtained when solving the FY equations [23]. More de-

tails are given in Appendix B.

The binding energies for the ground state (0+) and

first excited state (1+) of 4
ΛHe are tabulated in Table 1.

Clearly, within the numerical accuracy of better than

20 keV, the two approaches, J-NCSM and FY, agree

very nicely.

5.3 Effects of NN chiral interactions on BΛ

It is known that the nuclear binding energy E(3He) and

consequently E(4ΛHe) are very sensitive to the employed

NN potentials when three-nucleon (3N) and higher-body

forces are not included. This is noticeable in the bind-

ing energies of the 4
ΛHe(0+) state shown in Fig. 7, ob-

tained for various NN forces: the Idaho-N3LO(500), the

improved chiral N2LO and N4LO with a configuration-

space regulator of R = 0.9 fm [59, 60] and the SMS

N4LO+(450). All NN forces are evolved to an SRG
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Fig. 6 N -dependence of: (a) BΛ(5ΛHe), (b) BΛ(7ΛLi, 1
2

+
0). Same description as in Fig. 4. The Idaho-N3LO NN and NLO19(600)

YN potentials are SRG evolved to λNN = 1.6 fm-1 and λY N = 2.6 fm-1, respectively.

1.0 1.5 2.0 2.5 3.0
YN [fm 1]

11.0
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10.0

9.8

E[
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eV
]

1.8 2.0 2.2 2.4 2.6

11.05

11.00

10.95

10.90

10.85

10.80

Fig. 7 E(4ΛHe, 0+) as a function of λY N . The calculations are
based on the NLO19(600) YN potential and four chiral NN in-
teractions: the Idaho-N3LO(500) (red circles), two improved
chiral-N4LO (blue triangles) and chiral-N2LO (green dia-
monds) interactions regularized in configuration space with
a cutoff R = 0.9 fm [59, 60], and the SMS N4LO+(450) po-
tential (black crosses). All NN potentials are evolved to a
flow parameter of λNN = 1.6 fm-1. The error bars show the
estimated numerical uncertainties.

parameter of λNN = 1.6 fm-1. For that value over-

all the binding energies of the A = 3 to 6 nuclei are

reasonably well described. Of course, this requirement

can be fulfilled within a certain range of λNN values

so that the actual choice is to some extent arbitrary.

The YN potential is evolved to a wide range of flow

parameters, 1.0 ≤ λY N ≤ 3.0 fm-1. One clearly sees

that the binding-energy variations due to different chi-

ral NN forces can be as large as 270 keV. However, being

evolved to the same λNN = 1.6 fm-1, these NN poten-

tials have a rather similar impact on the Λ removal

energy, in particular for low SRG-YN flow parameters

λY N ≤ 1.6 fm-1 where there is practically no difference

1.0 1.5 2.0 2.5 3.0
YN [fm 1]

2.2

2.4

2.6

2.8

3.0

3.2

B
[M

eV
]

1.8 2.0 2.2 2.4 2.6

3.26

3.28

3.30

3.32

Fig. 8 BΛ(4ΛHe, 0+) as a function of λY N . Same description
of the curves as in Fig. 7.

in

BΛ(4ΛHe, 0+), see also Fig. 8. For higher values of λY N ,

the discrepancies among the computed values ofBΛ(4ΛHe,

0+) somewhat increase but remain relatively small, about

50 keV at most (at λY N = 2.0 fm-1). We stress that a

similar behavior is also observed for the Λ-separation

energies of 4
ΛHe(1+), 5

ΛHe and 7
ΛLi( 1

2

+
, 0).

Hence, in order to further explore the effect of the

NN interaction on BΛ, we perform calculations using

the two most accurate NN potentials, namely Idaho-

N3LO(500) and SMS N4LO+(450) evolved to several

λNN flow variables. It is remarked that, although these

two NN potentials describe the available NN scattering

data almost perfectly, they indeed have very different

matrix elements, particularly in the high-momentum

region. It is therefore of great interest to study their pre-

dictions for BΛ(A = 4− 7) more carefully. To speed up

the convergence of the results, the NLO19(600) YN po-
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(a) (b)

(c) (d)

Fig. 9 Λ-separation energies versus binding energies of the nuclear core: (a) 4
ΛHe(0+) and 3He, (b) 4

ΛHe(1+) and 3He, (c) 5
ΛHe

and 4He, (d) 7
ΛLi(1

2

+
, 0) and 6Li. The calculations are based on the Idaho-N3LO(500) (red circles) and the SMS N4LO+(450)

(blue asterisks) NN potentials, evolved to several values of λNN , in combination with the NLO19(600) YN interaction, SRG
evolved to λY N = 2.0 fm-1. The error bars show the estimated numerical uncertainties.

tential is evolved to a flow parameter of λY N = 2.0 fm-1.

This specific choice of λY N is based on the above ob-

servation (cf. Fig. 8) that the largest discrepancy in

BΛ is generally observed at that flow parameter. The

results for the A = 4 − 7 hypernuclei are displayed

in Fig. 9 where the Λ-separation energies are plotted

against the binding energies of the corresponding core

nucleus. For the chosen YN flow parameter, the hy-

pernuclei are strongly overbound compared to experi-

ment. We show the results here to emphasize the ef-

fect of different NN interactions. For a direct compari-

son with the experimental separation energies, see be-

low. The energies obtained with the Idaho-N3LO(500)

and SMS N4LO+(450) potentials are denoted by red

squares and blue crosses, respectively. Also, the error

bars are added in order to indicate the estimated nu-

merical uncertainties, which in many cases are hardly

visible. The light colored bands indicate the variation

of the separation energies depending on the binding

energy of the core nucleus. Evidently, there is a gen-

eral trend that stronger nuclear binding energies lead

to larger Λ-separation energies. Furthermore, the over-

all variations in the Λ-separation energies of the two

states 4
ΛHe(0+, 1+) due to the change in the 3He core

binding energies are noticeable, i.e. around 400 keV

(see panels (a), (b)). However, the width of the band is

rather small, of the order of 80 keV only. For the 5
ΛHe

system, panel (c), the variation of BΛ stemming from

the SRG evolution of the individual NN interactions is

roughly 600 keV while the overall discrepancy caused

by these two NN potentials can be twice as large. It

can be also clearly seen that the width of the band for
5
ΛHe is rather large, about 220 keV. However, given the

considerable variation in BΛ(5ΛHe), the relative width
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(roughly 22% of the 1 MeV total variation for all NN

interactions employed) is of the same order of magni-

tude as that for the two states of 4
ΛHe. Similarly, the

effect of the SRG-NN evolution on BΛ(7ΛLi, 12
+

) for the

SRG-YN flow parameter of λY N = 2.0 fm-1 is also pro-

nounced. Here, one of the individual NN potentials, i.e.

the Idaho-N3LO(500), already causes a discrepancy in

BΛ(7ΛLi, 12
+

) of about 0.8 MeV, which is almost twice

the variation in BΛ(5ΛHe). The total variation when con-

sidering both interactions is however similar for both

hypernuclei, namely 1.1 MeV. But the relative variation

(i.e. the relative width of the colored band in panel (d))

is rather large, about 400 keV (40% of the 1.1 MeV).

For larger λNN (λNN > 1.6 fm-1), the numerical un-

certainties become visible for 7
ΛLi and its core. Since

the larger λNN significantly increase the width of the

band, its width might be further reduced when more

converged calculations become available also for these

flow parameters. In any case, one can expect from the

correlations shown in Fig. 9 that the dependence of BΛ
on the nuclear interactions can be substantially reduced

once the 3N forces are properly included so that nuclear

core binding energies are in fair agreement with exper-

iment. Work in this direction is in progress.

5.4 Effects of the NLO YN interactions on BΛ

We are now in the position to study the impact of the

NLO13 and NLO19 YN interactions on the Λ-separation

energies. The two NLO potentials are practically equiv-

alent in terms of describing two-body YN observables.

Furthermore, by construction, they reproduce the ex-

perimental binding energy of 3
ΛH within its uncertainty

(of order of 50 keV). However, as discussed in Ref. [25],

the NLO19 interaction is characterized by a different

(somewhat weaker) Λ-Σ transition strength, particu-

larly in the 3S1 partial-wave channel, a feature that is

believed to be closely related to the strength of chiral

YNN forces [25, 35]. The latter is expected to mani-

fest itself in the predictions of observables (e.g. sep-

aration energies) for A ≥ 4 hypernuclei and in infi-

nite nuclear matter. Indeed, it has been found that

the NLO19 potential is more attractive in the medium

than NLO13 [25]. In addition, in that work, the possi-

ble impact of the NLO13 and NLO19 potentials on the

A = 4 hypernucleus has been thoroughly investigated,

using the Faddeev-Yakubovsky approach. We provide

here again results for the spin-doublet states of 4
ΛHe

for benchmarking. Furthermore, we extend the study

to the A = 5−7 hypernuclei. For our purpose, it is suf-

ficient to choose the SMS N4LO+(450) potential with

λNN = 1.6 fm-1.

The separation energies BΛ of the ground- and first-

excited states of the A = 4 − 7 hypernuclei evaluated

for the two NLO YN potentials with various regula-

tors ΛY = 500 − 650 MeV are presented in Fig. 10.

In that calculation, both YN interactions are evolved

to the same range of the SRG-YN flow parameters,

0.8 ≤ λY N ≤ 3.0 fm-1. For the two states of 7
ΛLi, the

calculations have only been performed up to λY N ≤
1.6 fm-1 in order to save some computational resources.

Overall, the dependence of BΛ on the chiral regula-

tor ΛY is somewhat stronger for the NLO19 than for

the NLO13 potential. This, however, does not relate to

any physical reason but simply reflects the fact that, in

the NLO19 realization, one has less freedom to absorb

regulator artifacts into the parameters of the chiral in-

teractions (low-energy constants, LECs) because some

of the LECs are determined (and taken over) from fits

to NN phase shifts in line with SU(3) flavor symmetry,

see [25]. There are also noticeable differences between

the Λ-separation energies obtained with the two inter-

actions, which apparently exceed the ΛY -dependence.

For all states except 4
ΛHe(0+), see panels (b-e), one ob-

serves a general tendency toward larger BΛ values pre-

dicted by NLO19 than those calculated with NLO13. In

other words, the interaction with a weaker Λ-Σ conver-

sion potential generally leads to larger Λ-separation en-

ergies. That trend is, however, not clear for the ground

state of 4
ΛHe as can be seen in panel (a). We remark

that a similar (chiral) regulator dependence and sen-

sitivity to the YN potential has been observed in the

Faddeev-Yakubovsky results for A = 3, 4 hypernuclei,

computed directly with the bare YN interactions [25].

There, it was already found that NLO19 leads to some-

what stronger binding which might be a result of the
weaker Λ-Σ conversion of NLO19 compared to NLO13.

The pronounced variations of BΛ predicted by the two

interactions are a striking evidence for possible con-

tributions of 3BFs to the Λ separation energy. These

discrepancies are expected to be largely removed once

proper chiral YNN forces are taken into account explic-

itly [61].

Let us mention that the strong sensitivity of the Λ-

separation energies of 4
ΛHe(1+) and 5

ΛHe to the Λ-Σ

transition potential can be understood using a sim-

ple approximation for the effective spin-dependent ΛN

potential in s-shell hypernuclei, which can be written
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Fig. 10 Λ-separation energies of (a) 4
ΛHe(0+), (b) 4

ΛHe(1+), (c) 5
ΛHe(1

2

+
), (d) 7

ΛLi(1/2+), (e) 7
ΛLi(3/2+) as a function of

the SRG-YN flow parameter λY N . Black lines with grey bands represent experimental value of BΛ and the uncertainties,
respectively. The calculations are based on the NN interaction SMS N4LO+(450) with the SRG-NN evolution parameter of
λNN = 1.6 fm-1 in combination with the NLO13 (red solid lines) and NLO19 (dashed blue lines) YN potentials for four
regulators, ΛY = 500 (triangles), 550 (stars), 600 (crosses) and 650 (circles) MeV.
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as [62,63]

3
ΛH : ṼΛN ≈

3

4
V sΛN +

1

4
V tΛN

4
ΛHe(0+) : ṼΛN ≈

1

2
V sΛN +

1

2
V tΛN

4
ΛHe(1+) : ṼΛN ≈

1

6
V sΛN +

5

6
V tΛN

5
ΛHe : ṼΛN ≈

1

4
V sΛN +

3

4
V tΛN ,

(27)

where V sΛN and V tΛN are the singlet- and triplet two-

body potentials, respectively. It follows clearly from

Eq. (27) that the two states, 4
ΛHe(1+) and 5

ΛHe, are

dominated by the spin-triplet ΛN interaction, which is,

as already mentioned, strongly influenced by the Λ-Σ

conversion. Interestingly, as can be seen in Fig. 10, the

results for 4
ΛHe(1+), 5

ΛHe(1/2+) and 7
ΛLi(3/2+) in pan-

els (b), (c) and (e) are clearly different for the NLO13

and NLO19 set of interactions. To a lesser extend this

can also be seen for 7
ΛLi(1/2+) in panel (d). Since 4

ΛHe(1+)

and 5
ΛHe are dominated by the 3S1 interaction,

cf. Eq. (27), this suggests that the 3S1 contribution

is also very important for 7
ΛLi, especially for the 3/2+

state. A future more detailed study will be necessary to

validate this hypothesis.

In this context, the probabilities of finding a Σ par-

ticle in the hypernuclear wave functions (PΣ) are of

great interest, too. Clearly, they are an indication for

the strength of the Λ-Σ conversion of the YN interac-

tion. Moreover, it can be expected that there are some

correlations to the charge-symmetry breaking (CSB)

of Λ separation energies of mirror hypernuclei as well
[23, 24]. Our calculated Σ-probabilities for A = 4 − 7

hypernuclei obtained with the two NLO potentials are

shown in Fig. 11. It is interesting that in all systems

PΣ decreases with decreasing λY N for λY N ≥ 1 fm−1

but increases again for λY N < 1 fm−1. Additionally,

The results displayed in panel (a) clearly indicate a no-

ticeable dependence of PΣ(4ΛHe, 0+) on the chiral cut-

off ΛY . That regulator dependence, however, becomes

somewhat less visible for all other states, see panels

(b-e). Also, the variation of the Σ-probabilities caused

by the two chiral interactions is most pronounced for
4
ΛHe(0+). This is exactly opposite to the observations

for the Λ-separation energies as discussed above. More-

over, there is an overall tendency toward larger PΣ pre-

dicted by the interaction with a stronger Λ-Σ transition

(i.e. NLO13) although it is somewhat blurred by the

regulator dependence. We further note that, while there

is a visible difference between the Σ-probabilities of the

s-shell spin-doublet states (in particular for the predic-

tions of NLO13), the p-shell doublet PΣ(7ΛLi, 1/2+) and

PΣ(7ΛLi, 3/2+) are quite similar for both interactions.

Clearly, one sees that the Λ-separation energies and Σ-

probabilities in A = 4 − 7 hypernuclei are somewhat

correlated. However, we do not observe a definite one-

to-one correlation between the two quantities.

5.5 Correlation of Λ-separation energies

In Section 5.4, we have observed surprisingly similar

trends of the Λ-separation energies for all investigated

hypernuclei with respect to the running SRG-YN flow

parameter λY N . This probably hints at some intriguing

correlations between the Λ-separation energies of these

systems. In order to quantitatively study these corre-

lations, we compute BΛ for all considered hypernuclei,

for the same range of λY N evolution parameters, and

compare the results with each other for selected values

of λY N . It is known that 5
ΛHe is the experimentally best

studied hypernucleus so far. Also, our J-NCSM results

for this hypernucleus are well-converged. We therefore

use 5
ΛHe as a benchmark system and plot BΛ(5ΛHe)

against the separation energies of other hypernuclear

systems (A = 3 − 7), see Fig. 12. For that, we choose

Idaho-N3LO(500) evolved to an SRG-NN flow variable

of λNN = 1.6 fm-1 for the NN interaction and NLO19

with a regulator of ΛY = 600 MeV for the YN interac-

tion. However, we want to emphasize that similar trends

are observed for SMS N4LO+(450) and in combination

with other YN interactions, see also [48]. Let us first

look at the correlation between the Λ removal energies

of the 5
ΛHe hypernucleus and of the hypertriton. Here

BΛ(3ΛH) are computed within the Faddeev-Yakubovky

approach since NCSM calculations are very difficult for

this weakly bound system. The correlation plot is pre-

sented in panel (a) of Fig. 12. Here each symbol repre-

sents the numerical BΛ of the two systems calculated at

the same flow parameter λY N , and it also includes the

estimated uncertainties that are small in most of the

cases. The straight line is obtained from a linear fit to

the results, reminding one of the Tjon line between the

binding energies of 4He and 3He [67–72]. We observe a

nearly perfect linear correlation between BΛ(3ΛH) and

BΛ(5ΛHe) for flow parameters up to λY N = 2.0 fm-1 and

a slight deviation from the straight line as λY N further

increases. The latter can be attributed to the possible

contribution of 3BFs [48]. Interestingly, the correlation

line goes through the experimental Λ-separation ener-

gies of the two systems at λY N = 0.836 fm-1. The value

of λY N , at which the 5
ΛHe hypernucleus is properly de-

scribed, will be referred to as the magic flow parameter

λmYN . For that value, the separation energy of 3
ΛH is

92 keV. Using the bare NLO19(600) and the same NN

interaction, we found 119 keV which is in reasonable
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Fig. 11 Probabilities of finding the Σ hyperon in the wave functions of (a) 4
ΛHe(0+), (b) 4

ΛHe(1+), (c) 5
ΛHe(1/2+), (d)

7
ΛLi(1/2+), (e) 7

ΛLi(3/2+) as a function of SRG-YN flow parameter λY N . Same NN potential, symbols and lines as in Fig. 10.

agreement with the result at λmYN . Obviously, the con-

crete value of λmYN will depend on the YN interactions

as well as their regulators.

The correlation plots for the ground and excited

states of 4
ΛHe/4ΛH are displayed in panels (b) and (c),

respectively. While there is a strictly linear correlation

between the separation energies BΛ(4ΛHe/4ΛH, 1+) and

BΛ(5ΛHe), the correlation line for BΛ(4ΛHe/4ΛH, 0+) and

BΛ(5ΛHe) exhibits a small loop to the right for large

values of λY N , λY N ≥ 2.4 fm-1 similar to the behav-

ior of the correlation line for BΛ(3ΛH) and BΛ(5ΛHe).

Also, from panels (b) and (c), one easily notices al-

most identical results for the isospin mirrors 4
ΛHe and

4
ΛH. This is because there are no CSB terms in the

employed version of the chiral YN potential. The CSB

effect arising from the point Coulomb interactions is

included in the calculation, but its contribution is mi-

nor [73, 74]. It is interesting that, at the magic flow

parameter, λmYN = 0.836 fm-1, the experimental value

of BΛ(4ΛHe, 1+) is exactly reproduced while the ground
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Fig. 12 Correlations of Λ-separation energies between 5
ΛHe and (a) 3

ΛH, (b) the 0+ state of 4
ΛHe (red) and 4

ΛH (blue), (c)
the 1+ state of 4

ΛHe (red) and 4
ΛH (blue), (d) 6

ΛHe (red) and 6
ΛLi (blue), (e) 7

ΛLi(1/2+, 0) and (f) 7
ΛLi(3/2+, 0), for a wide

range of flow parameters λY N . The error bars represent numerical uncertainties which are small in most of the cases. The
experimental Λ-separation energy for 5

ΛHe is from [52]. The results for other systems are taken from (a) [52], (b)-(c) [64] for
4
ΛHe (black asterisk) and 4

ΛH (grey square), (d) [65] for 6
ΛHe (black asterisk) and 6

ΛLi (grey square), (e) [52] and (f) [66]. The
Idaho-N3LO(500) evolved to 1.6 fm−1 and NLO19(600) was used for the NN and YN interaction, respectively.
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state is somewhat underbound. Furthermore, at this

λmYN our J-NCSM results for the spin doublet of 4
ΛHe,

BΛ(0+(1+)) = 1.57(0.97) MeV, are surprisingly close

to the those obtained within the exact Faddeev-Yaku-

bovsky method using the non-evolved bare YN inter-

actions, BΛ(0+(1+)) = 1.61(1.18) MeV. The slight de-

viation between the two results is consistent with the

size of 3BFs expected from the power counting of chiral

EFT [25].

Similarly, almost perfectly linear correlations are also

found between BΛ(5ΛHe) and the ground-state energies

EΛ of the p-shell 6
ΛHe and 6

ΛLi hypernuclei, panel (d), as

well as the Λ-separation energies BΛ of the ground and

first excited states in 7
ΛLi, panels (e) and (f), respec-

tively. Note that the resonance energies EΛ(6ΛLi/6ΛHe)

are computed as the difference between the hypernu-

clear binding energies E(6ΛLi/6ΛHe) and the binding en-

ergy E(4He). This removes most of the NN-interaction

dependence. In panel (d), one notices a pronounced dif-

ference in the binding energies EΛ of 6
ΛHe and 6

ΛLi

(about 1.08 MeV), which simply results from differ-

ent contributions of the Coulomb interactions of the

two nuclear cores 5He and 5Li. We remark that the

NLO19(600) YN potential with the magic flow param-

eter λmYN = 0.836 fm-1 underbinds the 6
ΛHe/6ΛLi systems

while it slightly overbinds the first excited state in 7
ΛLi.

The obtained Λ-separation energy for the ground state,

BΛ(7ΛLi, 1/2+) = 5.59± 0.01 MeV, is, however, in very

good agreement with the result from emulsion experi-

ments, BΛ(7ΛLi, 1/2+) = 5.58±0.03 MeV [52]. It should

be noted that counter experiments reported a some-

what larger value for 7
ΛLi(1/2+, 0), namely

BΛ(7ΛLi, 1/2+) = 5.85± 0.13± 0.1 MeV [75].

The observed linear correlations between the sepa-

ration energies of different hypernucler systems is rather

striking and interesting. It will be important to exam-

ine those correlations using different YN bare interac-

tions in order to check whether this useful property is a

universal feature or just a signature of the chiral inter-

actions. Nevertheless, our finding for the chiral forces

with SRG evolution suggests that the missing SRG-

induced three-body forces might be parameterized by

only one adjustable parameter (effects of SRG-induced

higher-body forces on BΛ are expected to be insignif-

icant [35]). If this is the case, one is able to minimize

the effects of the omitted three-body forces by tuning

the SRG-YN flow parameters λY N to the magic value

for which a particular hypernucleus, for example 5
ΛHe,

is properly described. This magic flow parameter λmYN
then can serve as a good starting point for hypernuclear

calculations requiring a SRG-YN evolution – which, in

turn, may provide a good opportunity to study hyper-

nuclear structure as well as the YN forces in a less ex-

pensive but realistic approach. A possible application

of this finding has been considered in [15, 48]. In this

context let us mention that similar linear correlations

have been also observed in Ref. [19] for the double-Λ

hypernuclei 5
ΛΛH and 6

ΛΛHe.

As discussed in Ref. [25], the contribution of chi-

ral 3BFs is comparable to the uncertainty at NLO of

approximately 200-300 keV for A = 4. The full λY N de-

pendence of the result is an order of magnitude larger

than what is expected for 3BFs by chiral power count-

ing. This situation is very different from that for ordi-

nary nuclei where SRG-induced and chiral 3BFs are of

comparable size. Wirth and Roth have pointed out that

the size of the SRG-induced 3BFs is probably enhanced

because the Σ contribution is significantly weakened

when λY N is lowered [35]. Our observation here is that,

for extreme values of λY N below 1 fm−1, the PΣ value

increases again and the overbinding disappears. For such

λY N , the contribution of 3BFs is again in line with the

expectation from the chiral power counting. Especially,

it seems to be neglible for 3
ΛH.

6 Conclusions

In this work, we have extended the nuclear J-NCSM

to describe baryonic systems with strangeness S = −1.

The inclusion of the strangeness degree of freedom sig-

nificantly complicates the implementation of the ap-

proach in part because the particle conversion Λ-Σ is

explicitly taken into account. Accordingly, the Jacobi

basis now consists of two orthogonal subsets, charac-

terized by the Λ and Σ hyperons. For the applications

of the two-body NN and YN forces, we introduced two

auxiliary bases that explicitly single out the involved

NN and YN pairs, respectively. Like the coefficients of

fractional parentage, the expansion coefficients can also

be computed in a preparatory step separately from any

binding-energy calculations. Once they are known, the

evaluation of the many-body Hamiltonian matrix el-

ements in the Jacobi basis (and therefore the energy

calculations) are straightforward.

As a first application of the Jacobi NCSM, we uti-

lized the approach to investigate hypernuclear systems

with A = 4− 7. Here, the Λ-separation (binding) ener-

gies are extracted systematically via a two-step proce-

dure that enables an effective removal of the HO-ω sen-

sitivity of the final results as well as a reliable estima-

tion of the numerical uncertainties. We performed the

energy calculations based on various SRG-evolved chi-

ral interactions. In particular, we considered the Idaho

N3LO and SMS N4LO NN potentials in combination

with the next-to-leading order YN interactions, NLO13

and NLO19. We found that at low values of the SRG
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YN flow parameter, λY N ≤ 1.4 fm-1, the separation en-

ergies are not very sensitive to the NN potentials. The

dependence somewhat increases for higher λY N , how-

ever, the relative variations remain quite similar for all

systems.

It turned out that, for some of the considered hy-

pernuclei, there are large differences between the pre-

dictions of the two practically phase-equivalent YN po-

tentials NLO13 and NLO19. Those can be attributed

to possible (but so far neglected) contributions of chi-

ral three-body (YNN) forces [61]. We also observed that

there are almost perfect linear correlations between the

Λ separation energies of the A = 4− 7 hypernuclei cal-

culated for a wide range of the SRG-YN flow param-

eter. Interestingly, at the magic value λmYN that yields

the empirical BΛ(5ΛHe), the separation energies of 3
ΛH

and 4
ΛHe(0+, 1+) are in good agreement with the results

for the non-evolved YN interactions (at least within

the expected contributions of the chiral 3BF), while

the one for 7
ΛLi is surprisingly close to the experiment.

This may suggest that by tuning the SRG parameter

such that the 5
ΛHe hypernucleus is correctly reproduced,

one can effectively minimize the effects of the missing

SRG-induced 3BF. Therefore, the special flow parame-

ter λmYN can be a good starting point for hypernuclear

calculations that require an SRG evolution. Such calcu-

lations will be useful to develop improved YN interac-

tions. Eventually, taking SRG-induced and chiral 3BF

into account will be necessary. Work in this direction is

in progress.
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Appendix A: Transition
〈(
α∗(1))∗(Y )|α∗(Y N)

〉
The states |α∗(Y N)〉 and

∣∣(α∗(1))∗(Y )〉
with directions of

momenta are illustrated in Figs. 13 and 14, respectively.

αA−2 : NA−2JA−2TA−2 ζA−2

3
2

1

αY N : NY NJY NTY N λ, nλ

Fig. 13 |α∗(Y N)〉 state with directions of momenta

α̃A−2 : ÑA−2J̃A−2T̃A−2 ζ̃A−2

3nN lNsN tN

1

nY lY sY tY2

Fig. 14
∣∣(α∗(1))∗(Y )〉

state with directions of momenta

The explicit quantum numbers of these states are∣∣(α∗(1))∗(Y )〉
= |α∗(1)A−1〉 ⊗ |Y 〉

= |ÑJT, α∗(1)(A−1) nY IY t̃Y ;

(J
∗(1)
A−1(lY sY )IY )J, (T

∗(1)
A−1t̃Y )T 〉 ≡

∣∣ 〉
,

(A.1)

with

|α∗(1)(A−1)N 〉 = |N ∗(1)(A−1)J
∗(1)
A−1T

∗(1)
A−1, α̃(A−2)N nNIN tN ;

(J̃A−2(lNsN )IN )J
∗(1)
A−1, (T̃A−2tN )T

∗(1)
A−1〉

≡
∣∣ 〉

,

(A.2)

and

|α∗(Y N)〉 = |αY N 〉 ⊗ |αA−2〉

= |NJ T , αY N nλλαA−2; ((lY N (sY sN )SY N )

JY N (λJA−2)Iλ)J , ((tY tN )TY NTA−2)T 〉
≡
∣∣ 〉

.

(A.3)

Thereby, the total HO quantum number is given by

Ñ = N ∗(1)(A−1)+2nY +lY andN = NY N+NA−2+2nλ+λ.

The transition
〈(
α∗(1)

)∗(Y )|α∗(Y N)
〉

can be interpreted

as a transformation between different Jacobi coordi-

nates. We can therefore make use of the general Jacobi-

coordinate transformation formula Eq. (11) in [38]. For

that, we first need to specify the directions of the rela-

tive motions of particles (subclusters) in the two states

|α∗(Y N)〉 and
∣∣(α∗(1))∗(Y )〉

. These directions are de-

picted in Figs. 13 and 14.

Comparing the definitions of our two states |α∗(Y N)〉
and

∣∣(α∗(1))∗(Y )〉
with the corresponding ones in Eq.

(11) in [38], one notices that the directions of the rel-

ative momenta are the same, however, the ordering of

the coupling of the angular momenta and isospins in
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and |α〉(13)2 are different. The recoupling

from (T̃A−2 tN )T
∗(1)
A−1 to (tN T̃A−2)T

∗(1)
A−1 requires a sim-

ple phase factor,∣∣(T̃A−2 tN )T
∗(1)
A−1

〉
= (−1)T̃A−2+tN−T∗(1)A−1

∣∣(tN T̃A−2)T
∗(1)
A−1

〉
.

(A.4)

And, changing the coupling
∣∣(J̃A−2(lNsN )IN )J

∗(1)
A−1

〉
to∣∣(lN (sN J̃A−2)SA−1)J

∗(1)
A−1

〉
can be done with the help of

6j-symbols

|
(
J̃A−2(lNsN )IN )J

∗(1)
A−1

〉
= (−1)IN+2J̃A−2+lN+sN×

∑
SA−1=J̃A−2+sN

ÎN ŜA−1

 J̃A−2 sN SA−1

lN J
∗(1)
A−1 IN


×
∣∣(lN (sN J̃A−2)SA−1)J

∗(1)
A−1

〉
,

(A.5)

where the abbreviation ÎN =
√

2IN + 1, etc., is intro-

duced. Now taking into account Eqs. (A.5) and (A.4)

and then making use of the Jacobi-coordinate transfor-

mation formula in [38], one obtains〈(
α∗(1)

)∗(Y )|α∗(Y N)
〉

=

δNÑ δtY t̃Y δT̃A−2TA−2
δJ̃A−2JA−2

δÑA−2NA−2
δζ̃A−2ζA−2

× ÎN ÎY ĴY N ŜY N ÎA−2Ĵ∗(1)A−1 T̂
∗(1)
A−1 T̂Y N

× (−1)3JA−2+2TA−2+TY N+SY N+λ+tY +lY +tN+lN+IN+1

×
∑

SA−1=J̃A−2+sN

(−1)SA−1 Ŝ2
A−1

JA−2 sN SA−1

lN J
∗(1)
A−1 IN



×
∑
L,S

L̂2Ŝ2


lN SA−1 J

∗(1)
A−1

lY sY IY

L S J



lY N SY N JY N

λ JA−2 IA−2

L S J


× 〈nN lN nY lY : L |nY N lY N nλ λ : L〉d

×

 sY sN SY N

JA−2 S SA−1


 tY tN TY N

TA−2 T T
∗(1)
A−1

 ,

(A.6)

where the HO bracket 〈nN lN nY lY : L |nY N lY N nλ λ :

L〉d follows the same convention as in [76] with the mass

ratio given by

d =
(A− 2)m(tY )

(A− 1)mN +m(tY )
. (A.7)

Appendix B: Faddeev-Yakubovsky equations

for hypernuclei

Faddeev-Yakubovsky equations in momentum space are

a well established tool to solve the Schrödinger equa-

tions for light hypernuclei with A = 3 or 4 [21, 23].

We use A = 4 results to benchmark the NCSM and to

provide results for bare interactions. For A = 3, mo-

mentum space is much more efficient for the represen-

tation of wave functions and, therefore, for the solution

of the Schrödinger equation than HO wave functions.

The weak binding of 3
ΛH leads to an extremely slow

convergence of the energy with respect to N .

Our solution follows Ref. [77]. For A = 3, we need

to solve a set of coupled Faddeev equations

|ψA〉 = G0t12(1− P12)|ψB〉
|ψB〉 = G0t31 (|ψA〉 − P12|ψB〉) (B.8)

for two Faddeev amplitudes |ψA〉 and |ψB〉. Here, we

assume that particles 1 and 2 are nucleons and par-

ticle 3 is the hyperon. The permutation operator P12

exchanges all coordinates and quantum numbers of the

two nucleons. G0 is the free three-baryon propagator.

The two off-shell t-matrices t12 and t31 are solutions of

the Lippmann-Schwinger equation of subsystem (12) or

(31), respectively. For the solution, we use two momen-

tum Jacobi bases:

|p12p3α〉 =

∣∣∣∣p12p3[(l12s12)j12

(
l3

1

2

)
I3

]
J(t12tY )TMT

〉
(B.9)

and

|p31p2β〉 =

∣∣∣∣p31p2[(l31s31)j31

(
l2

1

2

)
I2

]
J(t31

1

2
)TMT

〉
.

(B.10)

Here, pij denotes the magnitude of the relative momen-

tum in subsystem (ij) and pk the relative momentum

of particle k relative to the other two particles. The

angular dependence is expanded in corresponding or-

bital angular lij and lk. These are coupled to the spin

of the two-baryon subsystem sij to the total angular

momentum of the subsystem jij . lk and the spin 1/2

of the third baryon couple to the spectator angular

momentum Ik. Finally, the total angular momentum

J of the three-body system is obtained by coupling jij
and Ik. The isospin of the pair tij is coupled either

with the isospin of the hyperon tY = 0, 1 or with the

isospin of the nucleon 1/2 to the total isospin T and its

third component MT . For the hypertriton MT = 0 and

T = 0 is the by far dominant component of the wave

function. For the solution, the two Faddeev amplitudes

|ψA〉 and |ψB〉 are expanded in terms of their natural
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set of basis states |p12p3α〉 and |p31p2β〉, respectivley.

Because of the short-ranged hypernuclear interactions,

the t-matrices converge quickly with respect to partial

waves which is then also true for the Faddeev compo-

nents if expressed in their natural set of basis states.

Note that transitions between these states are required

in order to solve the equations. In this work, we re-

strict the partial wave so that jij ≤ 6. This ensures

that energies are converged to better than 1 keV. We

also calculated the wave function

|Ψ〉 = |ψA〉+ (1− P12)|ψB〉 (B.11)

and checked explicitly that the expectation value of the

Hamiltonian operator agrees with the energy obtained

by solving the Faddeev equations. For this check, we

need to include the T = 1 and T = 2 contributions to

reach an accuracy of the order of 1 keV.

For A = 4 hypernuclei, we need to solve a set of five

coupled Yakubovsky equations

|ψ1A〉 = G0t12(P13P23 + P12P23)

[|ψ1A〉+ |ψ1B〉+ |ψ2A〉]

|ψ1B〉 = G0t12 [(1− P12)(1− P23)|ψ1C〉

+(P13P23 + P12P23)|ψ2B〉]

|ψ1C〉 = G0t14 [|ψ1A〉+ |ψ1B〉+ |ψ2A〉 − P12|ψ1C〉

+P13P23|ψ1C〉+ P12P23|ψ2B〉]

|ψ2A〉 = G0t12 [(P12 − 1)P13|ψ1C〉+ |ψ2B〉]

|ψ2B〉 = G0t34 [|ψ1A〉+ |ψ1B〉+ |ψ2A〉] (B.12)

for the five Yakobovsky components |ψ1A〉, |ψ1B〉, |ψ1C〉,
|ψ2A〉 and |ψ2B〉. Each of these components is expanded

in terms of its natural Jacobi coordinate, respectively,

as defined below

|p12p3q4αA〉 =

∣∣∣∣p12p3q4 [[(l12s12)j12

(
l3

1

2

)
I3

]
j123

(
l4

1

2

)
I4

]
J

[
(t12

1

2
)τ123tY

]
TMT

〉

|p12p4q3αB〉 =

∣∣∣∣p12p4q3 [[(l12s12)j12

(
l4

1

2

)
I4

]
j124

(
l3

1

2

)
I3

]
J

[
(t12tY )τ124

1

2

]
TMT

〉

|p14p2q3αC〉 =

∣∣∣∣p14p2q3 [[(l14s14)j14

(
l2

1

2

)
I2

]
j124

(
l3

1

2

)
I3

]
J

[
(t14

1

2
)τ124

1

2

]
TMT

〉
|p12p34qβA〉 = |p12p34q [[(l12s12)j12 λ] I (l34s34)j34] J (t12t34)TMT 〉

|p34p12qβB〉 = |p34p12q [[(l34s34)j34 λ] I (l12s12)j12] J (t34t12)TMT 〉 . (B.13)

Here, the free propagator G0 and the t-matrices tij are

of course embedded into the four-baryon system. The

coupling scheme is much more complicated than in the

three-baryon system. Now there are two types of Jacobi

coordinates required. The first three basis sets are of the

“3+1” type. Here, three momenta pij , pk and ql are re-

quired that are relative momenta within the pair ij, of

particle k with respect to pair ij and of particle l with

respect to the three-body subsytem ijk. Additionally

to the quantum numbers of the three-body system, we

have now introduced jijk and τijk for the total angular

momentum and isospin of the three-body subsystem.

J , T and MT are the total angular momentum, isospin

and third component of isospin of the four-baryon sys-

tem. We have again omitted the spins and isospins of

the two baryons in the inner most subsystem since only

t4 = tY differs from 1/2. The last two basis sets are of

the “2+2” type. Here, relative momenta of two two-

body subsytems pij and pkl are introduced together

with angular momenta and isospins for these subsys-

tems. Additionally, the relative momentum of the two

pairs q and its angular momentum λ is required. In or-

der to finally define the total four-body angular momen-

tum, an additional intermediate angular momentum I

needs to be introduced as seen in the definition of the

states.

For four-baryon states, it is not sufficient to con-

strain the two-body angular momenta in order to get a

finite number of partial waves. Additional constraints

on other angular momenta are necessary. For the cal-

culations of this work, we chose jij ≤ 5, li ≤ 6, λ ≤
6, lij + lk + ll ≤ 10 and lij + lkl + λ ≤ 10. In or-

der to save computational resources, we restrict our-

selves to the by far most important isospin component

T = 1/2, although the contribution to the energy of

the Yakubovsky equations induces an uncertainty of
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10 keV. Interestingly, the other isospin components are

more important when calculating the expectation value

for which they contribute approximately 20 keV. Note

that also our J-NCSM results are based on the dom-

inant isospin components only. We therefore need to

take an uncertainty of approximately 20 keV in the

four-baryon systems into account due to missing isospin

components.

Once the Yakubovsky components are found, we ob-

tain the wave function by

|Ψ〉 = (1 + P13P23 + P12P23)|ψ1A〉

+(1 + P13P23 + P12P23)|ψ1B〉〉

+(1− P12)(1 + P13P23 + P12P23)|ψ1C〉

+(1 + P13P23 + P12P23)|ψ2A〉〉

+(1 + P13P23 + P12P23)|ψ2B〉 . (B.14)

This briefly summarizes the Faddeev-Yakubovsky

approach as we used it for benchmarking our J-NCSM

results.
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Properties of the bound Lambda (Sigma) N N system
and hyperon nucleon interactions. Phys. Rev. C, 51:2905,
1995. doi:10.1103/PhysRevC.51.2905.

23. A. Nogga, H. Kamada, and W. Glöckle. The Hypernu-
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