000889246 001__ 889246 000889246 005__ 20240610120727.0 000889246 0247_ $$2doi$$a10.1140/epja/s10050-020-00257-y 000889246 0247_ $$2ISSN$$a0939-7922 000889246 0247_ $$2ISSN$$a1431-5831 000889246 0247_ $$2ISSN$$a1434-6001 000889246 0247_ $$2ISSN$$a1434-601X 000889246 0247_ $$2Handle$$a2128/26757 000889246 0247_ $$2altmetric$$aaltmetric:85734509 000889246 0247_ $$2WOS$$aWOS:000578412200002 000889246 037__ $$aFZJ-2021-00151 000889246 082__ $$a530 000889246 1001_ $$0P:(DE-Juel1)179430$$aFrame, Dillon$$b0 000889246 245__ $$aImpurity lattice Monte Carlo for hypernuclei 000889246 260__ $$aHeidelberg$$bSpringer$$c2020 000889246 3367_ $$2DRIVER$$aarticle 000889246 3367_ $$2DataCite$$aOutput Types/Journal article 000889246 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1617694081_23317 000889246 3367_ $$2BibTeX$$aARTICLE 000889246 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000889246 3367_ $$00$$2EndNote$$aJournal Article 000889246 520__ $$aWe consider the problem of including Λ hyperons into the ab initio framework of nuclear lattice effective field theory. In order to avoid large sign oscillations in Monte Carlo simulations, we make use of the fact that the number of hyperons is typically small compared to the number of nucleons in the hypernuclei of interest. This allows us to use the impurity lattice Monte Carlo method, where the minority species of fermions in the full nuclear Hamiltonian is integrated out and treated as a worldline in Euclidean projection time. The majority fermions (nucleons) are treated as explicit degrees of freedom, with their mutual interactions described by auxiliary fields. This is the first application of the impurity lattice Monte Carlo method to systems where the majority particles are interacting. Here, we show how the impurity Monte Carlo method can be applied to compute the binding energies of the light hypernuclei. In this exploratory work we use spin-independent nucleon–nucleon and hyperon–nucleon interactions to test the computational power of the method. We find that the computational effort scales approximately linearly in the number of nucleons. The results are very promising for future studies of larger hypernuclear systems using chiral effective field theory and realistic hyperon–nucleon interactions, as well as applications to other quantum many-body systems. 000889246 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0 000889246 536__ $$0G:(GEPRIS)196253076$$aDFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076)$$c196253076$$x1 000889246 536__ $$0G:(DE-Juel1)jara0015_20200501$$aNuclear Lattice Simulations (jara0015_20200501)$$cjara0015_20200501$$fNuclear Lattice Simulations$$x2 000889246 588__ $$aDataset connected to CrossRef 000889246 7001_ $$0P:(DE-Juel1)145995$$aLähde, Timo A.$$b1 000889246 7001_ $$0P:(DE-Juel1)156278$$aLee, Dean$$b2 000889246 7001_ $$0P:(DE-Juel1)131252$$aMeißner, Ulf-G.$$b3$$eCorresponding author 000889246 773__ $$0PERI:(DE-600)1459066-9$$a10.1140/epja/s10050-020-00257-y$$gVol. 56, no. 10, p. 248$$n10$$p248$$tThe European physical journal / A$$v56$$x1434-601X$$y2020 000889246 8564_ $$uhttps://juser.fz-juelich.de/record/889246/files/2007.06335.pdf$$yOpenAccess 000889246 8564_ $$uhttps://juser.fz-juelich.de/record/889246/files/Frame2020_Article_ImpurityLatticeMonteCarloForHy.pdf$$yOpenAccess 000889246 909CO $$ooai:juser.fz-juelich.de:889246$$popenaire$$pdnbdelivery$$pdriver$$pVDB$$popen_access 000889246 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179430$$aForschungszentrum Jülich$$b0$$kFZJ 000889246 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145995$$aForschungszentrum Jülich$$b1$$kFZJ 000889246 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156278$$aForschungszentrum Jülich$$b2$$kFZJ 000889246 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131252$$aForschungszentrum Jülich$$b3$$kFZJ 000889246 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000889246 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0 000889246 9141_ $$y2020 000889246 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-28 000889246 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-28 000889246 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000889246 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-28 000889246 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-28 000889246 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-28 000889246 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2020-08-28$$wger 000889246 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-28 000889246 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-28 000889246 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000889246 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-28 000889246 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR PHYS J A : 2018$$d2020-08-28 000889246 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-28 000889246 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-28$$wger 000889246 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-28 000889246 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x0 000889246 9201_ $$0I:(DE-Juel1)IKP-3-20111104$$kIKP-3$$lTheorie der starken Wechselwirkung$$x1 000889246 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2 000889246 9801_ $$aFullTexts 000889246 980__ $$ajournal 000889246 980__ $$aVDB 000889246 980__ $$aI:(DE-Juel1)IAS-4-20090406 000889246 980__ $$aI:(DE-Juel1)IKP-3-20111104 000889246 980__ $$aI:(DE-82)080012_20140620 000889246 980__ $$aUNRESTRICTED 000889246 981__ $$aI:(DE-Juel1)IAS-4-20090406