001     889246
005     20240610120727.0
024 7 _ |a 10.1140/epja/s10050-020-00257-y
|2 doi
024 7 _ |a 0939-7922
|2 ISSN
024 7 _ |a 1431-5831
|2 ISSN
024 7 _ |a 1434-6001
|2 ISSN
024 7 _ |a 1434-601X
|2 ISSN
024 7 _ |a 2128/26757
|2 Handle
024 7 _ |a altmetric:85734509
|2 altmetric
024 7 _ |a WOS:000578412200002
|2 WOS
037 _ _ |a FZJ-2021-00151
082 _ _ |a 530
100 1 _ |a Frame, Dillon
|0 P:(DE-Juel1)179430
|b 0
245 _ _ |a Impurity lattice Monte Carlo for hypernuclei
260 _ _ |a Heidelberg
|c 2020
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1617694081_23317
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We consider the problem of including Λ hyperons into the ab initio framework of nuclear lattice effective field theory. In order to avoid large sign oscillations in Monte Carlo simulations, we make use of the fact that the number of hyperons is typically small compared to the number of nucleons in the hypernuclei of interest. This allows us to use the impurity lattice Monte Carlo method, where the minority species of fermions in the full nuclear Hamiltonian is integrated out and treated as a worldline in Euclidean projection time. The majority fermions (nucleons) are treated as explicit degrees of freedom, with their mutual interactions described by auxiliary fields. This is the first application of the impurity lattice Monte Carlo method to systems where the majority particles are interacting. Here, we show how the impurity Monte Carlo method can be applied to compute the binding energies of the light hypernuclei. In this exploratory work we use spin-independent nucleon–nucleon and hyperon–nucleon interactions to test the computational power of the method. We find that the computational effort scales approximately linearly in the number of nucleons. The results are very promising for future studies of larger hypernuclear systems using chiral effective field theory and realistic hyperon–nucleon interactions, as well as applications to other quantum many-body systems.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|x 0
|f POF III
536 _ _ |a DFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076)
|0 G:(GEPRIS)196253076
|c 196253076
|x 1
536 _ _ |a Nuclear Lattice Simulations (jara0015_20200501)
|0 G:(DE-Juel1)jara0015_20200501
|c jara0015_20200501
|x 2
|f Nuclear Lattice Simulations
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Lähde, Timo A.
|0 P:(DE-Juel1)145995
|b 1
700 1 _ |a Lee, Dean
|0 P:(DE-Juel1)156278
|b 2
700 1 _ |a Meißner, Ulf-G.
|0 P:(DE-Juel1)131252
|b 3
|e Corresponding author
773 _ _ |a 10.1140/epja/s10050-020-00257-y
|g Vol. 56, no. 10, p. 248
|0 PERI:(DE-600)1459066-9
|n 10
|p 248
|t The European physical journal / A
|v 56
|y 2020
|x 1434-601X
856 4 _ |u https://juser.fz-juelich.de/record/889246/files/2007.06335.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/889246/files/Frame2020_Article_ImpurityLatticeMonteCarloForHy.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:889246
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)179430
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145995
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)156278
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131252
913 1 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Computational Science and Mathematical Methods
|x 0
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-08-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-28
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2020-08-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR PHYS J A : 2018
|d 2020-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-28
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-08-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-28
920 1 _ |0 I:(DE-Juel1)IAS-4-20090406
|k IAS-4
|l Theorie der Starken Wechselwirkung
|x 0
920 1 _ |0 I:(DE-Juel1)IKP-3-20111104
|k IKP-3
|l Theorie der starken Wechselwirkung
|x 1
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-4-20090406
980 _ _ |a I:(DE-Juel1)IKP-3-20111104
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-4-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21