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Abstract. We consider the problem of including Λ hyperons into the ab initio framework of nuclear lattice
effective field theory. In order to avoid large sign oscillations in Monte Carlo simulations, we make use
of the fact that the number of hyperons is typically small compared to the number of nucleons in the
hypernuclei of interest. This allows us to use the impurity lattice Monte Carlo method, where the minority
species of fermions in the full nuclear Hamiltonian is integrated out and treated as a worldline in Euclidean
projection time. The majority fermions (nucleons) are treated as explicit degrees of freedom, with their
mutual interactions described by auxiliary fields. This is the first application of the impurity lattice Monte
Carlo method to systems where the majority particles are interacting. Here, we show how the impurity
Monte Carlo method can be applied to compute the binding energy of the light hypernuclei. In this
exploratory work we use spin-independent nucleon-nucleon and hyperon-nucleon interactions to test the
computational power of the method. We find that the computational effort scales approximately linearly
in the number of nucleons. The results are very promising for future studies of larger hypernuclear systems
using chiral effective field theory and realistic hyperon-nucleon interactions, as well as applications to other
quantum many-body systems.

PACS. 21.30.-x – 21.45.-v – 21.80.+a

1 Introduction

Hypernuclei are bound states of one or two hyperons to-
gether with a core composed of nucleons. They extend the
nuclear chart into a third dimension, augmenting the usual
two dimensions of proton number and neutron number.
We will use the notation Y for a Λ or Σ hyperon and N for
a nucleon. Due to the scarcity of direct hyperon-nucleon
(Y N) and hyperon-hyperon (Y Y ) scattering data, these
unusual forms of baryonic matter play an important role
in pinning down the fundamental baryon-baryon forces.
This requires on the one hand an effective field theory
(EFT) description of the underlying forces, as pioneered
in Ref. [1,2], and on the other hand a numerically pre-
cise and consistent method to solve the nuclear A-body
problem, such as nuclear lattice EFT (NLEFT) [3,4]. For
calculations combining these chiral EFT forces at LO and
NLO [5,6] with other many-body methods, see e.g. Ref. [7,
8,9,10,11,12].

In view of the success of NLEFT in the description
of nuclear spectra and reactions, it seems natural to ex-
tend this method to hypernuclei. However, this is not
quite straightforward. While one can extend the four spin-

isospin degrees of freedom comprising the nucleons to in-
clude the Λ and Σ states [13], this has not been done
because there is no longer an approximate symmetry such
as Wigner’s SU(4) symmetry [23] that protects the Monte
Carlo (MC) simulations against strong sign oscillations
when using auxiliary fields.1 The physics of hypernuclei
therefore requires a different approach, and in this paper
we show how the computational problems are solved using
the impurity lattice Monte Carlo (ILMC) method.

The ILMC method was introduced in Ref. [15] in the
context of a Hamiltonian theory of spin-up and spin-down
fermions, and applied to the intrinsically non-perturbative
physics of Fermi polarons in two dimensions in Ref. [16].
The ILMC method is particularly useful for the case where
only one fermion (of either species) is immersed in a “sea”
of the other species. Within the standard auxiliary field
Monte Carlo method, such an extreme imbalance would
lead to unacceptable sign oscillations in the Monte Carlo
probability weight. In the ILMC method, the minority

1 In the SU(3) limit of equal up, down and strange quark
masses, such a spin-flavor symmetry might be restored [14],
but this limit is far from the physical world.
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particle is “integrated out”, resulting in a formalism where
only the majority species fermions appear as explicit de-
grees of freedom, while the minority fermion is represented
by a “worldline” in Euclidean projection time. The spatial
position of this worldline is updated using Monte Carlo up-
dates, while the interactions between the majority fermions
are described by the auxiliary field formalism [4].

Here, we apply the ILMC method to the inclusion of
hyperons into NLEFT simulations. We identify the Λ hy-
peron as the minority species, which we represent by a
worldline in Euclidean time. This Λ worldline is treated
as immersed in an environment consisting of some num-
ber of nucleons. We focus on the Monte Carlo calculation
of the binding energy of light hypernuclei, by means of
a simplified Y N interaction, consisting of a single con-
tact interaction, tuned to a best description of the the
empirical binding energies of the s-shell hypernuclei with
A = 3, 4, 5.2 For the NN interaction, we use a simple lead-
ing order interaction similar to that described in Ref. [17].
We benchmark our ILMC results against Lanczos calcu-
lations of transfer matrix and exact Euclidean projection
calculations with initial/final states and number of time
steps that match the ILMC calculations. We note that our
Monte Carlo method is free from any approximation about
the nodal structure of the many-body wave function. This
is the first application of such unconstrained Monte Carlo
simulations to hypernuclei.

This paper is organized as follows. In Sec. 2, we present
the path integral formalism for our system of nucleons and
one hyperon. We first write the nucleon-nucleon interac-
tion first without auxiliary fields and then with auxiliary
fields. In Sec. 3 we present the equivalent system using
normal-ordered transfer matrices. In Sec. 4, we derive the
impurity worldline formalism for the chosen Y N interac-
tion, and introduce the concept of the “reduced” trans-
fer matrix operator, which acts on the nucleons only. In
Sec. 5, we discuss the Monte Carlo updating of the hy-
peron worldline and the auxiliary fields, which encode the
interactions between nucleons. In Sec. 6, we present re-
sults for the ground state energies of the s-shell nuclei and
hypernuclei. In Sec. 7, we conclude with a discussion of fu-
ture improvements and applications of the impurity lattice
Monte Carlo method to hypernuclei and other quantum
many-body systems.

2 Path integral formalism

We develop the ILMC formalism following Ref. [15], who
considered a system of spin-up and spin-down fermions,
with a contact interaction which operates between fermions
of opposite spin. The situation here is completely analo-
gous, we have one majority species, the nucleons, and one
impurity, the Λ. As usual in NLEFT, we consider positions
on a spatial lattice denoted by ~n and lattice spacing a. We

2 We are well aware of the importance of the ΛN -ΣN tran-
sition. However, we choose a simple starting point for this ex-
ploratory study and will consider more realistic interactions in
a later publication.

also assume that Euclidean time has been discretized, such
that slices of the Euclidean time are denoted by nt with
temporal lattice spacing at. The partition function can be
expressed in terms of the Grassmann path integral

Z =

∫ [ ∏
~n,nt
s=N,Y

dζs(~n, nt)dζ
∗
s (~n, nt)

]
exp(−S[ζ, ζ∗]), (1)

where the subscriptsN refer to all nucleon spin and isospin
components and Y refers to all hyperon spin components.
In this study we consider only Λ hyperons. In future work
we will also consider Σ hyperons or account for their influ-
ence via three-baryon interactions involving a Λ and two
nucleons. We also make the simplifying assumption that
the hyperon-nucleon and nucleon-nucleon interaction are
spin-independent and neglect Coulomb interactions. Be-
cause of the spin-independent interaction and the fact that
we have only one Lambda hyperon, from this point onward
we can restrict our attention to only one spin component
of the hyperon.

Assuming that the exponent of the Euclidean action
in Eq. (1) is treated by a Trotter decomposition, we find

S[ζ, ζ∗] ≡
∑
nt

{
St[ζ, ζ

∗, nt] + SY [ζ , ζ∗, nt]

+ SN [ζ , ζ∗, nt] + SY N [ζ, ζ∗, nt] + SNN [ζ, ζ∗, nt]

}
,

(2)

where the component due to the time derivative is

St[ζ, ζ
∗, nt] ≡

∑
~n,s=N,Y

ζ∗s (~n, nt)

×
[
ζs(~n, nt + 1)− ζs(~n, nt)

]
, (3)

while SY and SN describe the kinetic energies of the hy-
perons and nucleons, respectively. Further, SY N provides
the Y N interaction, and SNN the NN interaction, which
we shall consider next.

2.1 The hyperon-nucleon interaction

For the hyperons, we take for simplicity the lowest-order
(unimproved) kinetic energy

SY [ζ, ζ∗, nt] ≡ 6h
∑
~n

ζ∗Y (~n, nt)ζY (~n, nt)

− h
∑
~n

3∑
l=1

ζ∗Y (~n, nt)

[
ζY (~n+ êl, nt) + ζY (~n− êl, nt)

]
,

(4)

with
h ≡ αt

2mY

, (5)
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where mY is the hyperon mass, and we have defined αt ≡
at/a as the ratio of temporal and spatial lattice spacings.

The Y N interaction is given by

SY N [ζ, ζ∗, nt] ≡ αtCY N
∑
~n

ρN (~n, nt)ρY (~n, nt), (6)

where

ρN (~n, nt) ≡
∑
i,j

ρi,j(~n, nt) ≡
∑
i,j

ζ∗i,j(~n, nt)ζi,j(~n, nt),

(7)

and
ρY (~n, nt) ≡ ζ∗Y (~n, nt)ζY (~n, nt), (8)

are nucleon and hyperon densities, respectively, with spin
i = 0, 1 (up, down) and isospin j = 0, 1 (proton, neutron).
The tuning of the coupling constant CY N is discussed in
Section 6.

Note that this is a simplified version of the pionless
EFT calculation of Ref. [18], which also included a three-
body interaction at LO. Such an interaction is sub-leading
in chiral EFT approaches (such as NLEFT). See also the
recent work in Ref. [19].

2.2 The nucleon-nucleon interaction

For the kinetic energy of the nucleon degrees of freedom,
we likewise use the lowest-order expression

SN [ζ, ζ∗, nt] ≡
3αt
mN

∑
~n

ρN (~n, nt)

− αt
2mN

∑
~n

3∑
l=1

[ρN (~n, ~n+ êl, nt) + ρN (~n, ~n− êl, nt)] ,

(9)

where

ρN (~n, ~n′, nt) ≡
∑
i,j

ζ∗i,j(~n, nt)ζi,j(~n
′, nt), (10)

ρN (~n, nt) ≡ ρN (~n, ~n, nt), (11)

and mN is the nucleon mass. Here, the êl are unit vectors
in lattice direction l.

The Wigner SU(4)-symmetric part of the leading-order
(LO) NN interaction of Refs. [20,21,22] is used for the
present work. This is an approximate symmetry [23] of the
low-energy nucleon-nucleon interactions, where the spin
and isospin degrees of freedom of the nucleons can be ro-
tated as four components of an SU(4) multiplet. We have

SNN [ζ, ζ∗, nt] ≡
αtCNN

2

∑
~n,~n′,~n′′

ρsN (~n′, nt)fsL(~n′ − ~n)

× fsL(~n− ~n′′)ρsN (~n′′, nt), (12)

where

ρsN (~n, nt) ≡
∑
i,j

ζ
sNL∗
i,j (~n, nt)ζ

sNL
i,j (~n, nt), (13)

is the smeared nucleon density, and the (local) smearing
function fsL is defined as

fsL(~n) ≡ 1 for |~n| = 0,

≡ sL for |~n| = 1,

≡ 0 otherwise, (14)

and the (non-locally) smeared Grassmann fields are given
by

ζ
sNL
i,j (~n, nt) ≡ ζi,j(~n, nt) + sNL

∑
|~n′|=1

ζi,j(~n+ ~n′, nt), (15)

and

ζ
sNL∗
i,j (~n, nt) ≡ ζ∗i,j(~n, nt) + sNL

∑
|~n′|=1

ζ∗i,j(~n+~n′, nt), (16)

where the values of the parameters CNN , sL and sNL used
for the present work are discussed in Section 6 (see also
Ref. [17] for a full treatment).

For the NN interaction we can reduce the expressions
quadratic in the nucleon densities using the relation

exp

(
−αtCNN

2
ρ̃2
)

=

1√
2π

∫ ∞
−∞

dφ e−
φ2

2 exp
(√
−αtCNN φρ̃

)
, (17)

where
ρ̃ ≡

∑
~n′

fsL(~n− ~n′)ρsN (~n′, nt), (18)

for each lattice site (~n, nt), such that φ(~n, nt) is treated as
a scalar auxiliary (Hubbard-Stratonovich) field. The NN
action then becomes

exp(−SNN [ζ, ζ∗, nt])

=

∫ ∏
~n

[
dφ(~n, nt)√

2π
e−

1
2φ

2(~n,nt)

]
exp(−SφN [ζ, ζ∗, nt]),

(19)

for Euclidean time slice nt, where

SφN [ζ, ζ∗, nt] = −
√
−αtCNN

×
∑
~n,~n′

φ(~n, nt)fsL(~n− ~n′)ρsN (~n′, nt), (20)

for CNN < 0.
In the ILMC calculations, the path integral over the

auxiliary field φ is evaluated using either local Metropo-
lis algorithm updates or global lattice updates using the
hybrid Monte Carlo (HMC) algorithm. See Ref. [17] for
more details on efficient Monte Carlo algorithms.

3 Transfer matrix formalism

Derivations of Feynman rules are usually easier to perform
in the Grassmann formalism. However, actual NLEFT cal-
culations are performed using the transfer matrix Monte
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Carlo method. As noted in Ref. [15], the Grassmann and
transfer matrix operator formulations are connected by
the exact relationship

Tr
{

: fNt−1[as(~n), a†s′(~n
′)] : · · · : f0[as(~n), a†s′(~n

′)] :
}

=∫ [ ∏
~n,nt
s=N,Y

dζs(~n, nt)dζ
∗
s (~n, nt)

]
exp

(
−
∑
nt

St[ζ, ζ
∗, nt]

)

×
Nt−1∏
nt=0

fnt
[
ζs(~n, nt), ζ

∗
s′(~n

′, nt)
]
, (21)

where f is an arbitrary function, a†s and as denote cre-
ation and annihilation operators for the fermion degrees
of freedom, and the colons signify normal ordering. Using
this identity, we can write the partition function in Eq. (1)
as

Z = Tr(M̂Nt), (22)

where M̂ is the (normal-ordered) transfer matrix operator.
We can use Eq. (21) to define the full transfer matrix

operator as

M̂ = : exp(−αtĤ) : . (23)

with Hamiltonian

Ĥ ≡ ĤN
0 + ĤY

0 + ĤNN + ĤY N . (24)

We now go through each of these terms. The nucleon ki-
netic energy term is

ĤN
0 ≡

3

mN

∑
~n

ρ̂N (~n)

− 1

2mN

∑
~n

3∑
l=1

[ρ̂N (~n, ~n+ êl) + ρ̂N (~n, ~n− êl)] ,

(25)

with

ρ̂N (~n, ~n′) ≡
∑
i,j

a†i,j(~n)ai,j(~n
′), (26)

ρ̂N (~n) ≡ ρ̂N (~n, ~n). (27)

The hyperon kinetic energy term is

ĤN
0 ≡

3

mY

∑
~n

ρ̂Y (~n)

− 1

2mY

∑
~n

3∑
l=1

[ρ̂Y (~n, ~n+ êl) + ρ̂Y (~n, ~n− êl)] , (28)

with

ρ̂Y (~n, ~n′) ≡
∑
i,j

a†Y (~n)aY (~n′), (29)

ρ̂Y (~n) ≡ ρ̂Y (~n, ~n). (30)

The NN interaction is

ĤNN =
CNN

2
:
∑

~n,~n′,~n′′

ρ̂sN (~n′)fsL(~n′ − ~n)

× fsL(~n− ~n′′)ρ̂sN (~n′′) :, (31)

with

ρ̂sN (~n) ≡
∑
i,j

a
sNL†
i,j (~n)a

sNL
i,j (~n), (32)

and the operators a
sNL†
i,j (~n) and a

sNL
i,j (~n) are defined in

terms of the (non-locally) smeared annihilation and cre-
ation operators

a
sNL
i,j (~n) ≡ ai,j(~n) + sNL

∑
|~n′|=1

ai,j(~n+ ~n′), (33)

and

a
sNL†
i,j (~n) ≡ a†i,j(~n) + sNL

∑
|~n′|=1

a†i,j(~n+ ~n′). (34)

The Y N interaction is

ĤY N = CY N
∑
~n

ρ̂N (~n)ρ̂Y (~n). (35)

When rewriting the nucleon-nulceon interaction with
auxiliary fields, the partition function takes the form

Z =

∫ ∏
~n,nt

[
dφ(~n, nt)√

2π
e−

1
2φ

2(~n,nt)

]
Tr[M̂ (Nt−1) · · · M̂ (0)],

(36)

where
M̂ (nt) ≡ : exp(−αtĤ(nt)) :, (37)

with
Ĥ(nt) ≡ ĤN

0 + ĤY
0 + Ĥ

(nt)
φN + ĤY N , (38)

and

Ĥ
(nt)
φN = −

√
−αtCNN

×
∑
~n,~n′

φ(~n, nt)fsL(~n− ~n′)ρ̂sN (~n′, nt). (39)

4 Impurity worldlines and reduced transfer
matrices

We now integrate out the hyperon degree of freedom and

derive a “reduced” transfer matrix operator /̂M , which acts
on the nucleon degrees of freedom only. Let us consider the
transfer matrix between time slices nt and nt + 1. Let |~n〉
represent the state with the hyperon at lattice site ~n. We
first consider the case when the hyperon hops from lattice
site ~n to ~n± êl. We then have

〈~n± êl|M̂ (nt)|~n〉 = /̂M
(nt)

~n±êl,~n (40)
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where /̂M
(nt)

~n±êl,~n is the reduced transfer matrix operator
acting on only the nucleons with

/̂M
(nt)

~n±êl,~n = h : exp(−αtĤ(nt)
~n±êl,~n) :, (41)

where

Ĥ
(nt)
~n±êl,~n = HN

0 + ĤY
0 + Ĥ

(nt)
φN . (42)

Next we consider the case when the hyperon remains
at lattice site ~n between time slices nt and nt+1. We then
have

〈~n|M̂ (nt)|~n〉 = /̂M
(nt)

~n,~n , (43)

where the reduced transfer matrix is

/̂M
(nt)

~n,~n = (1− 6h) : exp(−αtĤ(nt)
~n,~n ) :, (44)

with

Ĥ
(nt)
~n,~n = HN

0 + ĤY
0 + Ĥ

(nt)
φN +

CY N
1− 6h

ρ̂N (~n) + · · · . (45)

The ellipses refers to terms with higher powers of ρ̂ and
additional factors of αt. These are lattice artifacts that
disappear in the limit αt → 0. They are needed to cancel
the higher-order powers of the CY N term when expanding
the exponential in Eq. (44) beyond the linear term. In the
full transfer matrix such terms vanish upon normal order-
ing of the hyperon field since we have only one hyperon in
our system. However, when we integrate out the hyperon
worldline, such terms no longer vanish since the hyperon
is no longer a dynamical field.

In our simulations here we drop all such higher-order
terms from our ILMC simulations. This choice constitutes
a redefinition of our starting interaction to include some
small higher-body interactions between the hyperon and
more than one nucleon. Since we will take αt to be very
small, the most important induced higher-body interac-
tion is a small three-body interaction. The three-body in-
teraction has the form

ĤY NN = − αtC
2
Y N

2(1− 6h)

∑
~n

ρ̂N (~n)ρ̂N (~n)ρ̂Y (~n), (46)

We see explicitly that this term is a lattice artifact that
disappears when αt → 0.

5 Monte Carlo calculation

We now describe how ILMC calculations are performed
using the Projection Monte Carlo (PMC) method. Let us
first assume that the impurity has been fixed at a given
spatial lattice site, and that no “hopping” of the impurity
occurs during the Euclidean time evolution. We shall then
relax this constraint, and discuss a practical algorithm for
updating the configuration of the hyperon worldline.

5.1 Stationary impurity

For a stationary hyperon impurity, the reduced transfer
matrix is given by Eq. (44), and for the purposes of the
PMC calculation, we define the Euclidean projection am-
plitude

Zjk(Nt) ≡ 〈ψj | /̂M
Nt |ψk〉, (47)

for a product of Nt Euclidean time slices, where j and
k denote different initial cluster states. As usual, this is
expressed as a determinant of single-particle amplitudes,
which gives

Zjk(Nt) = detM jk
p×p, (48)

where

M jk
p×p =


〈φ0,j | /̂M

Nt |φ0,k〉 〈φ0,j | /̂M
Nt |φ1,k〉 · · ·

〈φ1,j | /̂M
Nt |φ0,k〉 〈φ1,j | /̂M

Nt |φ1,k〉 · · ·
...

...
. . .

 , (49)

for p nucleons. By means of the projection amplitudes (48),
we construct

[M̂a(Nt)]qq′ ≡
∑
q′′

Z−1qq′′(Nt)Zq′′q′(Nt + 1), (50)

which is known as the “adiabatic transfer matrix”. If we
denote the eigenvalues of (50) by λi(Nt), we find

λi(Nt) = exp(−αtEi(Nt + 1/2)), (51)

such that the low-energy spectrum is given by the “tran-
sient” energies

Ei(Nt + 1/2) = − log(λi(Nt))

αt
, (52)

at finite temporal lattice spacing at. For the case of a single
trial cluster state with p nucleons, Eq. (48) reduces to

Z(Nt) = detM00
p×p, (53)

for the case of a single trial state. The ground-state energy
is obtained from

E0(Nt + 1/2) = − log(Z(Nt + 1)/Z(Nt))

αt
, (54)

in the limit Nt → ∞, where the exact low-energy spec-
trum of the transfer matrix will be recovered. Note that
the argument Nt + 1/2 is conventionally assigned to the
transient energy computed from the ratio of projection
amplitudes evaluated at Euclidean time steps Nt + 1 and
Nt.

As an example, for the hypertriton we have p = 2
nucleons after the impurity hyperon has been integrated
out. We start the Euclidean time projection with a sin-
gle initial trial cluster state (j = k = 0) consisting of a
spin-up proton and a spin-up neutron. As there are no
terms that mix spin or isospin, the other components of
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each single-particle state are set to zero, and remain so
during the PMC calculation. For the spatial parts of the
nucleon wave functions, we may choose, for example, the
zero-momentum state

|φ0,0〉 = |φ1,0〉 = 〈0, 0, 0〉, (55)

in the notation of Ref. [15], which denotes plane-wave or-
bitals in a cubic box. In principle, we may also choose
any other plane-wave state with non-zero momentum (see
Table 1 of Ref. [15]), or any other more complicated trial
state. For the heavier nuclei, it is indeed better to choose
an initial state where the nucleons are clustered together.
In this case we sum over all possible translations of the
cluster in order construct an initial state with zero total
momentum.

5.2 Hopping impurity

If the hyperon impurity is allowed to hop between nearest-
neighbor sites (from one Euclidean time slice to the next),
the Euclidean projection amplitude becomes a sum over
hyperon worldline configurations. This gives

Zjk(Nt) ≡
∑

~n0,...,~nNt

〈ψj | /̂M
Nt

{~nj}|ψk〉, (56)

where the product

/̂M
Nt

{~nj} ≡ /̂M~nNt
,~nNt−1

/̂M~nNt−1,~nNt−2
. . . /̂M~n2,~n1

/̂M~n1,~n0
,

(57)
is expressed in terms of the reduced transfer matrices (44)
and (41). Here, ~nj denotes the spatial position of the hy-
peron impurity (which has been integrated out) on time
slice j. The expressions for the projection amplitude and
determinant are generalized to

Zjk(Nt) =
∑

~n0,...,~nNt

detM jk
p×p, (58)

where

M jk
p×p =


〈φ0,j | /̂M

Nt

{~nj}|φ0,k〉 〈φ0,j | /̂M
Nt

{~nj}|φ1,k〉 · · ·

〈φ1,j | /̂M
Nt

{~nj}|φ0,k〉 〈φ1,j | /̂M
Nt

{~nj}|φ1,k〉 · · ·
...

...
. . .

 ,

(59)
such that the determinant is now to be computed over all
possible hyperon wordline configurations.

We note that the worldline configuration is to be up-
dated stochastically using a Metropolis algorithm. Thus,
proposed changes in the impurity worldline are accepted
or rejected by importance sampling with |Zjj(Nt)| as the
probability weight function. Here, j denotes one of the
initial trial nucleon cluster states.

5.3 Worldline updates

The updating of the impurity worldline is handled in two
steps: The generation of a new proposed worldline, and
a Metropolis accept/reject step to determine whether to
use the generated worldline. For this work, the worldline
W (~n, nt) is a function of only the lattice site ~n and the
Euclidean time step nt, and is equal to 1 where the impu-
rity is present, and 0 at all other lattice points. From the
expressions of the reduced transfer matrices, the worldline
at two adjacent time steps, W (~n′, nt) and W ′(~n′, nt + 1)
must obey the relation |~n− ~n′| ≤ 1. For an illustration of
the impurity (hyperon) worldline, see Fig. 1.

space

E
u

c
lid

e
a

n
 t

im
e

Λ

Fig. 1. Illustration of the hyperon worldline. In the reduced
transfer matrix formalism, the hyperon has been “integrated
out”, and the interaction between the hyperon and the nucle-
ons is mediated by an effective “background field” generated
by the hyperon worldline.

For the non-interacting worldline, we can generate new
configurations from the free probabilities, as determined
from the reduced transfer matrices. In this case, Ph = h is
the hopping probability, and Ps = (1−6h) is the probabil-
ity to remain stationary. When initializing the worldline
at the beginning of the MC simulation, we may start from
a configuration where the worldline is completely station-
ary (“cold start”) or one where the worldline either hops
or remains stationary at each time step according to the
probabilities Ph and Ps (“warm start”).

At the beginning of every sweep through the lattice,
we propose a new worldline to use for that sweep. This is
done by taking the previous worldline and choosing a ran-
dom time at which we cut the worldline and regenerating
it either in the forwards and backwards time direction.
The new worldline is then accepted or rejected using a
Metropolis accept or reject condition to preserve detailed
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balance associated with the absolute value of the ampli-
tude.

6 Results

For the results presented in what follows, we use a spa-
tial lattice spacing a = 1/(100 MeV) and temporal lat-
tice spacing of at = 1/(300 MeV). The non-local smear-
ing parameter is chosen to be sNL = 0.2, and the local
smearing parameter is set to sL = 0.0. Since we only
consider s-shell nuclei and hypernuclei in this study, the
local attraction provided by sL for heavier nuclei is not
needed [20]. The coupling constant CNN is set to −7.5×
10−6 MeV−2, and this combination of parameters yields
a nucleon-nucleon scattering length aNN = 6.86 fm and
effective range rNN = 1.77 fm. The scattering length and
effective range are calculated using Lüscher’s finite volume
method [24], as described in the Appendix of Ref. [25].
We find that these parameters produce good results for
the average S-wave phase shifts as well as the three- and
four-nucleon binding energies. The exact transfer matrix
calculation of the three-nucleon system and the Monte
Carlo calculation of the four-nucleon system are both de-
scribed in the following paragraphs. As stated previously,
in this study the spin-dependent terms of the nucleon-
nucleon interaction are not accounted for.

For the Y N interaction, we set CY N according to the
best overall fit to the light hypernuclei. Fitting to the
Λ separation energies for 3

ΛH, 4
ΛH/He, and 5

ΛHe, we find
CY N = −1.6× 10−5 MeV−2. This gives aY N = −0.45 fm
for the scattering length and rY N = −0.45 fm for the
effective range. In Table 1, we present benchmark calcula-
tions of the ILMC results for 3

ΛH in comparison with exact
transfer matrix calculations. We show the results for the
energy as a function of Euclidean projection time.

Table 1. ILMC results for the energy of 3
ΛH versus Euclidean

time in comparison with exact transfer matrix results for peri-
odic box length 15.8 fm.

Nt t (MeV−1) ILMC (MeV) Exact (MeV)

50 0.1667 −1.0878(6) −1.0878

100 0.3333 −1.4598(9) −1.4590

150 0.5000 −1.6778(11) −1.6760

200 0.6667 −1.7975(13) −1.7966

250 0.8333 −1.8630(17) −1.8614

300 1.0000 −1.8971(18) −1.8954

We see that the agreement is quite good. The ini-
tial/final nucleon trial states for these calculations are
taken to be spatially constant functions, which correspond
to single-particle states of zero momentum in a periodic
cubic box. The hyperon initial/final wave function is also
taken be a constant function. Since we use a constant
initial/final state wave function for the hyperon, the ini-
tial/final positions for the hyperon worldline are irrelevant

in the Monte Carlo updating process. These exact trans-
fer matrix calculations include the induced three-baryon
interaction described in Eq. (46).

In Table 2, we present exact Lanczos transfer matrix
calculations of the ground state of 2H, 3

ΛH, and separation
energy BΛ, as a function of periodic box length. In this
work, we also present the exact Lanczos transfer matrix
calculation wherever it is computationally possible and
using Monte Carlo for cases where it is not. Given the ex-
tremely small Λ separation energy, it is necessary to go to
very large volumes in order to remove finite volume arti-
facts. Interestingly, BΛ is found to be relatively constant
with the periodic box size L. This suppression of the finite
volume dependence is an indication that the asymptotic
normalization coefficient of the hypertriton wave function
is small [26,27].

Table 2. Exact transfer matrix results for 2H, 3
ΛH, and the

separation energy BΛ versus periodic box length.

L (fm) 2H (MeV) 3
ΛH (MeV) BΛ (MeV)

15.8 −1.651 −1.932 0.281

17.8 −1.460 −1.712 0.252

19.7 −1.332 −1.569 0.237

21.7 −1.245 −1.474 0.228

23.7 −1.186 −1.410 0.224

25.6 −1.146 −1.368 0.222

27.6 −1.118 −1.339 0.221

29.6 −1.100 −1.319 0.220

In Fig. 2, we present ILMC results for the 4
ΛH/He en-

ergy versus Euclidean time. These calculations use a pe-
riodic box size of L = 15.8 fm with up to Nt = 300 Eu-
clidean time steps. In order to extract the ground state
energy, we use the extrapolation ansatz

E(t) = E0 + c exp(−∆Et), (60)

which takes into account the residual dependence of the
first excited state that couples to our initial/final states.
For this calculation, we use an initial/final state where
the nucleon states have a spatially decaying exponential
form with respect to the nucleus center of mass, while the
initial/final hyperon wave function is a constant function.
It suffices to have an initial/final state with some overlap
with the ground state wave function, and we find that
these choices work very well.

In Fig. 3, we show lattice Monte Carlo (LMC) results
for the 4He energy versus Euclidean time. As there are no
hyperons in this system, these are auxiliary field Monte
Carlo calculations without impurity worldlines. These cal-
culations use a periodic box size of L = 9.9 fm with
up to Nt = 150 Euclidean time steps. In order to ex-
tract the ground state energy, we again use the exponen-
tial ansatz in Eq. (60). For this calculation, we again use
an initial/final state where the nucleons have a spatially-
decaying exponential form with respect to the nucleus cen-
ter of mass.
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Fig. 2. ILMC results for the 4
ΛH/He energy versus Euclidean

projection time in a periodic box size of L = 15.8 fm. We
extract the ground state energy using an exponential ansatz
for the asymptotic time dependence.
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Fig. 3. LMC results for the 4He energy versus Euclidean pro-
jection time in a periodic box size of L = 9.9 fm. We extract
the ground state energy using an exponential ansatz for the
asymptotic time dependence.

In Fig. 4, ILMC results are shown for the 5
ΛHe energy

versus Euclidean time. These calculations use a periodic
box size of L = 9.9 fm with up to Nt = 250 Euclidean time
steps. We again use the exponential ansatz from Eq. (60)
to extract the ground state energy. Similar to the 4

ΛH/He
calculation, here we use an initial/final state where the
nucleons have a spatially decaying exponential form with
respect to the nucleus center of mass, while the initial/final
hyperon wave function is a constant function.

In Table 3, we present the lattice results for all of the
s-shell nuclei and hypernuclei. The exact transfer matrix
results are shown without error bars, while the ILMC and
LMC results are shown with error bars that take into ac-
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Fig. 4. ILMC results for the 5
ΛHe energy versus Euclidean time

in a periodic box size of L = 9.9 fm. We extract the ground
state energy using an exponential ansatz for the asymptotic
time dependence.

count stochastic errors and extrapolation errors. There is
also a residual systematic error due to finite volume ef-
fects. For a box size of L = 29.6 fm, the finite volume
error on 2H is 0.04 MeV, and the estimated finite volume
error for 3

ΛH is also ' 0.04 MeV. As both corrections are in
the same direction (with more binding at finite volume),
the resulting finite volume error on the separation energy
is < 0.002 MeV.

For a box size of L = 15.8 fm, the finite volume error
on 3H/He is ' 0.10 MeV, and the estimated finite volume
errors for 4

ΛH/He are also ' 0.10 MeV. For a box size of
L = 9.9 fm, the finite volume error on 4He is ' 1.5 MeV,
and the estimated finite volume errors for 4

ΛH/He are '
2.0 MeV.

Table 3. Summary of lattice results (exact transfer matrix,
ILMC and LMC) for the energies of light nuclei and hyper-
nuclei, and for separation energies. Comparisons with exper-
imental separation energies are given where such data exists.
These comparisons are averaged over Wigner SU(4) and Λ spin
components. For the case of 4

ΛH/He, we average over the 0+

and 1+ separation energies for 4
ΛH and 4

ΛHe weighted by num-
ber of spin components. More data can be found in the review
Ref. [34].

Nucleus L (fm) E (MeV) BΛ (MeV) Bexp
Λ (MeV)

2H 29.6 −1.100 – –
3
ΛH 29.6 −1.319 0.220 0.13(5) [29,30,31]

3H/He 15.8 −8.725 – –
4
ΛH/He 15.8 −9.19(5) 0.46(5) 1.39(4) [29,30,31,32,33]

4He 9.9 −25.698(9) – –
5
ΛHe 9.9 −29.66(6) 3.96(6) 3.12(2) [29,30,31]

For the comparison with the experimental results, we
average over Wigner SU(4) and Λ spin components where
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data exists. We see that while the Bexp
Λ is larger than

the experimental values for 3
ΛH and 5

ΛHe, the separation
is smaller than experimental value for 4

ΛH/He. This is an
indication that there are deficiencies in our very simple
treatment of the Y N and NN interactions. However, this
serves as a good starting point for determining the essen-
tial features of the Y N interactions needed to describe the
structure and properties of hypernuclei.

7 Discussion

We have shown, as a proof of principle, how state-of-the-
art NLEFT calculations can be extended to include hy-
perons. As the number of hyperons in realistic hypernuclei
is small (typically one or two) relative to the number of
nucleons, we have applied the ILMC method whereby the
hyperon “impurity” is integrated out and represented by a
hyperon “worldline”, the position of which is updated dur-
ing the MC calculation. Effectively, the standard NLEFT
calculations for nucleons are augmented by a “background
field” induced by the hyperon worldline. We have bench-
marked the ILMC method by presenting preliminary MC
results for the s-shell hypernuclei, using a simplified inter-
action similar to pionless EFT.

One of the most promising aspects of this work is the
fact that the ILMC simulations scale very favorably with
the number of nucleons. We have found that nearly all of
the computational effort is consumed in calculating single-
nucleon amplitudes as a function of the auxiliary field. As
this part of the code scales linearly with the number of
nucleons, it should be possible to perform calculations of
hypernuclei with up to one hundred or more nucleons.
We note also that the particular set of interactions that
we have used here can also be directly applied to study-
ing the properties of a bosonic impurity immersed in a
superfluid Fermi gas. By modifying the included P -wave
interactions of the impurity, we would also be able to de-
scribe the properties of an alpha particle immersed in a
gas of superfluid neutrons. The possible applications of
this method clearly go well beyond hypernuclear struc-
ture calculations and have general utility for numerous
quantum many-body systems.

Returning to hypernuclear systems, the obvious next
extension of this work is to include spin-dependent Y N
interactions. The importance of the spin-dependence of
the Y N interaction can be seen clearly in the splittings
between the 0+ and 1+ states in 4

ΛH and 4
ΛHe Ref. [28].

One should also include explicit ΛN -ΣN transitions, see
e.g. [35], as well as one-meson exchange interactions that
would put the Y N interaction in the same EFT formal-
ism [5,6] as currently used for the NN interaction in
NLEFT [22].

The number of adjustable parameters in the Y N in-
teraction will then increase. The most natural approach,
in line with the treatment of the NN interaction, would
be to fit such parameters to ΛN scattering phase shifts.
However, due to the paucity of such data (especially at
low energies), we expect to need at least the hypertriton
binding energy as an additional constraint, as it is also

done in continuum chiral EFT, see e.g. Ref. [6]. As the
effects of ΛN -ΣN transitions are included, it may be nec-
essary to use further empirical data on other light hyper-
nuclei to constrain the relevant LECs. A further extension
concerns the extension to S = −2 hypernuclei, which on
the one hand would involve the Y Y interactions [36,37,
38] and on the other hand a modified ILMC algorithm
for two interacting worldlines. Work along these lines is
underway.
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