000889250 001__ 889250
000889250 005__ 20240610120737.0
000889250 0247_ $$2doi$$a10.3390/sym12060981
000889250 0247_ $$2Handle$$a2128/26722
000889250 0247_ $$2WOS$$aWOS:000550803700001
000889250 037__ $$aFZJ-2021-00155
000889250 082__ $$a570
000889250 1001_ $$0P:(DE-Juel1)131252$$aMeissner, Ulf-G.$$b0$$eCorresponding author
000889250 245__ $$aTwo-Pole Structures in QCD: Facts, Not Fantasy!
000889250 260__ $$aBasel$$bMDPI$$c2020
000889250 3367_ $$2DRIVER$$aarticle
000889250 3367_ $$2DataCite$$aOutput Types/Journal article
000889250 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1610458125_23480
000889250 3367_ $$2BibTeX$$aARTICLE
000889250 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889250 3367_ $$00$$2EndNote$$aJournal Article
000889250 520__ $$aThe two-pole structure refers to the fact that particular single states in the spectrum as listed in the PDG tables are often two states. The story began with the Λ(1405) , when in 2001, using unitarized chiral perturbation theory, it was observed that there are two poles in the complex plane, one close to the K¯¯¯p and the other close to the πΣ threshold. This was later understood combining the SU(3) limit and group-theoretical arguments. Different unitarization approaches that all lead to the two-pole structure have been considered in the mean time, showing some spread in the pole positions. This fact is now part of the PDG book, although it is not yet listed in the summary tables. Here, I discuss the open ends and critically review approaches that cannot deal with this issue. In the meson sector, some excited charm mesons are good candidates for such a two-pole structure. Next, I consider in detail the D∗0(2300) , which is another candidate for this scenario. Combining lattice QCD with chiral unitary approaches in the finite volume, the precise data of the Hadron Spectrum Collaboration for coupled-channel Dπ , Dη , DsK¯¯¯ scattering in the isospin I=1/2 channel indeed reveal its two-pole structure. Further states in the heavy meson sector with I=1/2 exhibiting this phenomenon are predicted, especially in the beauty meson sector. I also discuss the relation of these two-pole structures and the possible molecular nature of the states under consideration
000889250 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000889250 536__ $$0G:(GEPRIS)196253076$$aDFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076)$$c196253076$$x1
000889250 588__ $$aDataset connected to CrossRef
000889250 773__ $$0PERI:(DE-600)2518382-5$$a10.3390/sym12060981$$gVol. 12, no. 6, p. 981 -$$n6$$p981 -$$tSymmetry$$v12$$x2073-8994$$y2020
000889250 8564_ $$uhttps://juser.fz-juelich.de/record/889250/files/2005.06909.pdf$$yOpenAccess
000889250 8564_ $$uhttps://juser.fz-juelich.de/record/889250/files/symmetry-12-00981-v2.pdf$$yOpenAccess
000889250 909CO $$ooai:juser.fz-juelich.de:889250$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000889250 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131252$$aForschungszentrum Jülich$$b0$$kFZJ
000889250 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000889250 9141_ $$y2020
000889250 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-03
000889250 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-03
000889250 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000889250 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-03
000889250 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSYMMETRY-BASEL : 2018$$d2020-09-03
000889250 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-03
000889250 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-03
000889250 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-03
000889250 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-03
000889250 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-03
000889250 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-03
000889250 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889250 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-03
000889250 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-03
000889250 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-03
000889250 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-03
000889250 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-03
000889250 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x0
000889250 9201_ $$0I:(DE-Juel1)IKP-3-20111104$$kIKP-3$$lTheorie der starken Wechselwirkung$$x1
000889250 9801_ $$aFullTexts
000889250 980__ $$ajournal
000889250 980__ $$aVDB
000889250 980__ $$aUNRESTRICTED
000889250 980__ $$aI:(DE-Juel1)IAS-4-20090406
000889250 980__ $$aI:(DE-Juel1)IKP-3-20111104
000889250 981__ $$aI:(DE-Juel1)IAS-4-20090406