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Abstract: The two-pole structure refers to the fact that particular single states in the spectrum as
listed in the PDG tables are often two states. The story began with the Λ(1405), when in 2001, using
unitarized chiral perturbation theory, it was observed that there are two poles in the complex plane,
one close to the K̄p and the other close to the πΣ threshold. This was later understood combining
the SU(3) limit and group-theoretical arguments. Different unitarization approaches that all lead
to the two-pole structure have been considered in the mean time, showing some spread in the pole
positions. This fact is now part of the PDG book, although it is not yet listed in the summary tables.
Here, I discuss the open ends and critically review approaches that cannot deal with this issue. In the
meson sector, some excited charm mesons are good candidates for such a two-pole structure. Next,
I consider in detail the D∗0 (2300), which is another candidate for this scenario. Combining lattice
QCD with chiral unitary approaches in the finite volume, the precise data of the Hadron Spectrum
Collaboration for coupled-channel Dπ, Dη, DsK̄ scattering in the isospin I = 1/2 channel indeed
reveal its two-pole structure. Further states in the heavy meson sector with I = 1/2 exhibiting this
phenomenon are predicted, especially in the beauty meson sector. I also discuss the relation of these
two-pole structures and the possible molecular nature of the states under consideration.

Keywords: chiral symmetry; coupled channels; hadron spectrum; lattice QCD; chiral perturbation
theory; unitarization

1. Introduction

The hadron spectrum is arguably the least understood part of Quantum Chromodynamics (QCD),
the theory of the strong interactions. It is part of the successful Standard Model (SM) and, thus, we
can say that structure formation, that is the emergence of hadrons and nuclei from the underlying
quark and gluon degrees of freedom, is indeed the last corner of the SM that is not yet understood.
For a long time, the quark model of Gell–Mann [1] and Zweig [2] (and many sophisticated extensions
thereof, e.g., [3]) have been used to bring order into the particle zoo. However, already before QCD
it was a puzzling fact that all observed hadrons could be described by the simplest combinations
of quarks/antiquarks, namely mesons as quark–antiquark states and baryons as three quark states,
while symmetries and quantum numbers would also allow for tetraquarks, pentaquarks and so on.
The situation got even worse when QCD finally appeared on the scene, as it allows for the following
structures (bound systems of quarks and/or gluons):

• Conventional hadrons, that is mesons and baryons as described before;
• Multiquark hadrons, such as tetraquark states (mesons from two quarks and two antiquarks),

pentaquark states (baryons made from four quarks and one antiquark) and so on;
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• Hadronic molecules and atomic nuclei, that is multiquark states composed of a certain number of
conventional hadrons (as discussed in more detail below);

• Hybrid states, which are composed of quarks and (valence) gluons; and
• Glueballs, bound states solely made of gluons, arguably the most exotic form of matter, which has

so far been elusive in all searches.

The observed hadrons are listed with their properties in the tables of the Particle Data Group
(PDG) (also called “Review of Particle Physics” (RPP)) [4] within a certain rating scheme, just telling us
that some states are better understood as others. What complicates matters a lot is the fact that almost
all hadrons are resonances, that is unstable states. These decay into other hadrons and leptons, e.g., the
ρ meson decays into two pions or into a pion and a photon (and other final states). Such a resonance
is thus described by a complex energy, more precisely, the real part is called the mass, mR, and the
imaginary part the half-width, ΓR/2. Consequently, all other properties are also given by complex
numbers. The only model-independent way (There are very few exceptions of isolated resonances
on an energy-independent background where other methods can be used, but even in such cases a
unique determination of the mass and the width is not always possible, see, e.g., the discussion of the
ρ(770) in the RPP.) to pin down these basic resonance properties is to look for poles in the complex
plane, where resonances are usually located on the second Riemann sheet at

zR = (<zR,=zR) = (mR, ΓR/2). (1)

The residues at these poles contain information about the possible decays of such a resonance, as
discussed in more detail below.

As I discuss in what follows, the hunt for such poles in the complex plane has revealed the
astonishing feature of the two-pole structure, namely that certain states that are listed in the RPP are
indeed superpositions of two states. The most prominent example is the Λ(1405), which is discussed
in detail in Section 3. More recently, the D∗0 (2300), an excited charm meson, has become another
prime candidate for the two-pole scenario, paving the way for a whole set of such states in the
heavy-light sector (mesons made of one light (u, d, s) and one heavy (c, b) quark) (see Section 4). Before
discussing these intricate states, it is, however, necessary to review the pertinent methods underlying
the theoretical analyses (see Section 2). The conclusions and outlook are given in Section 5.

2. Methods

We start with the Lagrangian of QCD for up, down and strange quarks (N f = 3), which can be
written as:

LQCD = L0
QCD − q̄Mq,

L0
QCD = − 1

2g2 Tr
[
GµνGµν

]
+ q̄iγµ(∂µ − iAµ︸ ︷︷ ︸

=Dµ

)q. (2)

Here, q = (u, d, s)T is the quark triplet, Aµ is the gluon field, Gµν is the gluon field strength tensor,
g is the strong coupling constant and the color indices related to the underlying SU(3)c local gauge
symmetry have not been displayed. Further,M = diag(mu, md, ms) is the quark matrix and the heavy
flavors charm and bottom can be added analogously (We eschew here the top quark as it does not form
hadrons due to its fast decay.). In addition, gauge fixing and the CP-violating θ-term are not displayed.
Remarkably, L0

QCD displays a SU(3) × SU(3) flavor symmetry (I do not discuss the additional U(1)
symmetries/non-symmetries here),

L0
QCD(Gµν, q′, Dµq′) = L0

QCD(Gµν, q, Dµq), (3)

in terms of left- and right-handed quark fields,



Symmetry 2020, 12, 981 3 of 21

q′ = gRPRq + gLPLq, PR,L =
1
2
(1± γ5), gI g†

I = 1, detgI = 1, I = L, R. (4)

This is the chiral symmetry of QCD. It leads to 16 = 2 · (N2
f − 1) conserved Noether currents,

which can be rearranged as eight conserved vector and eight conserved axial-vector currents. However,
we know that the symmetry of the ground state is not the symmetry of the QCD Hamiltonian, as, e.g.,
there is no parity-doubling in the spectrum. The symmetry is spontaneously broken (or hidden, as
Nambu preferred to say) to its vectorial subgroup:

SU(3)L × SU(3)R → SU(3)V . (5)

The Goldstone theorem then tells us that for each broken generator there should be a massless
boson (the famous Goldstone bosons). Therefore, in the absence of quark masses, we are dealing with
a theory without a mass gap, which implies that Taylor expansions are not analytic. When the quark
masses are included, the pseudoscalar Goldstone bosons acquire a small mass. In fact, the lightest
hadrons are the eight pseudoscalar mesons (π, K, η). All this is the basis for the formulation of an
effective field theory (EFT) that allows for perturbative calculations at low energy. Similarly, for the
heavy quarks c and b, one can formulate a different EFT, based on the fact that the c ad b masses are
large, mc,b � ΛQCD, as discussed next.

2.1. Limits of QCD

We discuss one particular limit of QCD above, namely the chiral limit of the three light flavor
theory. Such a special formulation can be extended also to the heavy quark sector and to so-called
heavy-light systems. The various limits of QCD are:

• Light quarks:
LQCD = q̄L iD/ qL + q̄R iD/ qR +O(m f /ΛQCD)[ f = u, d, s]. (6)

In this limit, left- and right-handed quarks decouple which, is the chiral symmetry. As stated, it is
spontaneously broken leading to the appearance of eight pseudo-Goldstone bosons. The pertinent
EFT is chiral perturbation theory (CHPT) (see Section 2.2). Note that the corrections due to the
quark masses are powers in m f .

• Heavy quarks:
LQCD = Q̄ f iv · D Q f +O(ΛQCD/m f )[ f = c, b], (7)

where Q denotes the field of a heavy quark. In this limit, the Lagrangian is independent of quark
spin and flavor, which leads to SU(2) spin and SU(2) flavor symmetries, called HQSS and HQFS,
respectively. The pertinent EFT is heavy quark effective field theory (HQEFT) (see, e.g., [5,6]).
Here, the corrections due to the quark masses are powers in 1/mQ.

• Heavy-light systems: Here, heavy quarks act as matter fields coupled to light pions and one thus
can combine CHPT and HQEFT, as pioneered in [7–9] (see also Section 2.3).

2.2. A Factsheet on Chiral Perturbation Theory

Chiral perturbation theory is the EFT of QCD at low energies [10,11]. For introduction and
reviews, see, e.g., [12–14]. Its basic properties are:

• L is symmetric under some Lie group G; here, G = SU(3)L× SU(3)R.
• The ground state |0〉 is asymmetric and G is spontaneously broken toH ⊂ G, leading to the the

appearance of Goldstone bosons (GBs) |φi(p)〉. In QCD,H = SU(3)V and the Goldstone bosons
are the aforementioned eight pseudoscalar mesons.
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• In QCD, the matrix element of the axial-vector current Ai
µ, 〈0|Ai

µ|φk(p)〉 = iδik pµF 6= 0
(i = 1, . . . , 8), where F is related to the pseudoscalar decay constant in the chiral limit. F 6= 0 is a
sufficient and necessary condition for spontaneous chiral symmetry breaking.

• There are no other massless strongly interacting particles.

Universality tells us that, at low energies, any theory with these properties looks the same as long
as the number of space-time dimensions is larger than two. One can readily deduce that the interactions
of the GBs are weak in the low-energy regime and indeed vanish at zero energy. This allows for a
systematic expansion in small momenta and energies, and the quark masses lead to finite but small GB
masses, which defines a second expansion parameter. In fact, these two parameters can be merged in
one. The corresponding effective Lagrangian is readily constructed; it takes the form

Leff = L(2) + L(4) + L(6) + . . . , (8)

where the superscript denotes the power of the small expansion parameter p (derivatives and/or GB
mass insertions). This expansion is systematic, as an underlying power counting [11] can be derived.
This shows that graphs with n loops are suppressed by powers of p2n and that, at each order, we have
local operators accompanied by unknown coupling constants, also called low-energy constants (LECs).
These LECs must be determined from fits to experimental data or can be calculated using lattice QCD.
Their specific values single out QCD from the whole universality class of theories discussed above.
One important issue concerns unitarity. Leading order calculations are based on tree diagrams with
insertions from L(2), which means that such amplitudes are real. Imaginary parts are only generated
at one-loop order through the loop diagrams, which means that unitarity is fulfilled perturbatively but
not exactly in CHPT (for a general discussion, see [15]). We come to this issue in Section 2.4.

Matter fields such as baryons can also be included in a systematic fashion. There is one major
complication, namely the matter field mass that is of the same size as the breakdown scale of the EFT,
here Λχ ∼ 1 GeV. Therefore, only three-momenta of the matter fields can be small and the mass must
be dealt with in some manner. Various schemes such as the heavy baryon approach [16,17], infrared
regularization [18] and the extended on-mass-shell scheme [19] exist to restore the power counting.
For details, I refer to the reviews [20–22].

2.3. Chiral Perturbation Theory for Heavy-Light Systems

In this section, we display the effective Lagrangians that we need for the discussion of charm
mesons and their interactions. Consider first Goldstone boson scattering off D-mesons. The effective
Lagrangian takes the form [23–25]:

Leff = L(1) + L(2),
L(1) = DµDDµD† −M2

DDD†,

L(2) = D
[
−h0〈χ+〉 − h1χ+ + h2〈uµuµ〉 − h3uµuµ

]
D̄ +DµD [h4〈uµuν〉 − h5{uµ, uν}]DνD̄. (9)

Here, D = (D0, D+, D+
s ) is the D-meson triplet, MD is the average mass of the D-mesons and

we utilize the standard chiral building blocks uµ ∼ ∂µφ, with φ a member of the GB octet and
χ+ ∼ diag(mu, md, ms). The pertinent LECs can all be determined: h1 = 0.42 from the Ds-D splitting,
while h2,3,4,5 are fixed from a fit to lattice data [26]. Further, h0 can be fixed from the pion mass
dependence of the D meson masses.

In what follows, we also consider B̄→ D transitions with the emission of two light pseudoscalars
(pions). Here, chiral symmetry puts constraints on one of the two pions while the other one moves fast
and does not participate in the final-state interactions. The corresponding chiral effective Lagrangian
is developed in Ref. [27]:
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Leff = B̄
[
c1
(
uµtM + Mtuµ

)
+ c2

(
uµ M + Muµ

)
t + c3 t

(
uµ M + Muµ

)

+ c4
(
uµ〈Mt〉+ M〈uµt〉

)
+ c5 t〈Muµ〉+ c6〈

(
Muµ + uµ M

)
t〉
]
∂µD†, (10)

in terms of the B-meson triplet B̄ = (B−, B̄0, B̄0
s ), M is the matter field for the fast-moving pion and

t = uHu is a spurion field for Cabbibo-allowed decays,

H =




0 0 0
1 0 0
0 0 0


 . (11)

In the B→ Dππ decays that we discuss below, only some combinations of the LECs ci (i = 1, . . . , 6)
appear (see Section 4.3).

2.4. Unitarization Schemes

As stated above, unitarity is only fulfilled perturbatively in CHPT. The hard scale in this EFT
is set by the appearance of resonances, such as the f0(500) or the ρ(770) in various partial waves of
pion–pion scattering. CHPT is thus not the proper framework to describe resonances. One possible way
to extend the energy region where this can be applied is unitarization, originally proposed in Ref. [28].
However, this comes at a price, usually crossing symmetry is violated in such type of approach and
the coefficient of subleading chiral logarithms are often incorrectly given (see [15]). Here, let us just
discuss a familiar approach on solving the Bethe–Salpeter equation in the on-shell approximation (see,
e.g., [29,30]). To be specific, let us consider the coupled-channel process φ + D → φ + D (suppressing
all indices). The basic unitarization method is depicted in Figure 1. It amounts to a resummation
of the so-called “fundamental bubble” (the 2-point loop function). To describe resonances, e.g., the
D∗s0(2317), one has to search for poles of the T-matrix, which is generated from the CHPT potential by
unitarization.

= + + + ...
V V VV V V

V

G GGT

Figure 1. The T-matrix for GB (dashed lines) scattering off D-mesons (solid lines) as a bubble sum
based on the effective potential V, which is obtained from the underlying chiral effective Lagrangian.

This version of unitarized CHPT is based on the fundamental equation

T−1(s) = V−1(s)− G(s), (12)

where V(s) is derived from the effective Lagrangian Equation (9) and G(s) is the 2-point scalar loop
function regularized by a subtraction constant a(µ),

G(s) =
1

16π2

{
a(µ) + ln

m2
2

λ2 +
m2

1 −m2
2 + s

2s
ln

m2
1

m2
2
+

σ

2s

[
ln(s−m2

1 + m2
2 + σ)

− ln(−s + m2
1 −m2

2 + σ) + ln(s + m2
1 −m2

2 + σ)− ln(−s−m2
1 + m2

2 + σ)
] }

, (13)

with σ =
{
[s− (m1 + m2)

2][s− (m1 −m2)
2]
}1/2 and m1 and m2 are the masses of the two mesons in

the loop, here one D-meson and one GB. µ is the scale of dimensional regularization, and a change of µ

can be absorbed by a corresponding change of a(µ). Promoting T(s), V(s) and G(s) to be matrix-valued
quantities, it is easy to generalize Equation (12) to coupled channels. More details on the unitarization
schemes are given in the subsequent sections.
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2.5. Unitarized Chiral Perturbation Theory in a Finite Volume

To compare with lattice data, we need to formulate the unitarization scheme in a finite volume
(FV). Obviously, in any FV scheme, momenta are no longer continuous but quantized,

~q =
2π

L
~n,~n ∈ Z3, (14)

in a cubic volume of length L, i.e., V = L3. An appropriate FV representation of the scalar 2-point
function is (see [31] for details)

G̃(s, L) = lim
Λ→∞

[
1
L3

|~q|<Λ

∑
~n

I(~q )−
∫ Λ

0

q2dq
2π2 I(~q )

]
, (15)

with I(~q ) the corresponding integrand. The FV energy levels of the process under consideration are
then obtained from the poles of T̃(s, L):

T̃−1(s, L) = V−1(s)− G̃(s, L). (16)

Note that all volume dependence resides in G̃(s, L) and the effective Lagrangian and thus the effective
potential are the same as in the continuum [32]. Again, in the case of coupled channels, Equation (16)
is promoted to a matrix equation.

3. The Story of the Λ(1405)

3.1. Basic Facts

In the quark model, the Λ(1405) is a uds excitation with JP = 1/2− a few hundred MeV above
the ground-state Λ(1116). The RPP gives one corresponding state with

m = 1405.1+1.3
−1.0MeV , Γ = 50.5± 2.0 MeV. (17)

In fact, the Λ(1405) was predicted long before the quark model as a resonance in the coupled πΣ
and K̄N channels (see [33] and also [34]), and considered as a K̄N bound state, arguably the first “exotic”
hadron ever. The analytical structure in the complex energy plane between the πΛ and ηΛ thresholds
is shown in Figure 2, together with the location of the the Λ(1405) and the further isospin splitting of
the pertinent πΣ and K̄N thresholds. The Λ(1405) was clearly seen in K−p→ Σ3π reactions at 4.2 GeV
at CERN [35]. The spin and parity were only recently determined directly in photoproduction reactions
at Jefferson Laboratory, consistent with the theoretical expectation of JP = 1/2− [36]. However, it is
too low in mass for the quark model, but can be described in certain models such as the cloudy bag
model (it is amusing to note that the two-pole structure of the Λ(1405) was already observed in this
model but little attention was paid to this work [37]) or the Skyrme model. However, these models are
only loosely rooted in QCD and do not allow for controlled error estimates, an important ingredient in
any theoretical prediction.
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Figure 2. Complex energy plane in the vicinity of the Λ(1405).
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3.2. Enter Chiral Dynamics

An important step in the theory of the Λ(1405) was based on the idea of combining the (leading
order) chiral SU(3) meson–baryon Lagrangian with coupled-channel dynamics [38]. This study gave
an excellent description of the K−p→ K−p, K0n, π0Λ, π±Σ∓, π0Σ0 scattering data and the πΣ mass
distribution, and it was found that the Weinberg–Tomozawa (WT) term gave the most important
contribution. In this scheme, the Λ(1405) appears as a dynamically generated state, a meson–baryon
molecule, connecting the pioneering coupled-channel works with the chiral dynamics of QCD. This led
to a number of highly cited follow-up papers by the groups from Munich and Valencia (see, e.g., [39,40]
and the early review [29]). These groundbreaking works were, however, beset by certain shortcomings.
In particular, there was an unpleasant regulator dependence for the employed Yukawa-type functions
or momentum cutoffs and the issue of maintaining gauge invariance in such type of regulated theories
was only resolved years later [41–43].

3.3. The Two-Pole Structure

A re-analysis of coupled-channel K−p scattering and the Λ(1405) in the framework of unitarized
CHPT was performed by Oller and Meißner [44]. This work was originally motivated by
developing methods to overcome some of the shortcomings discussed before. The following technical
improvements were worked out: (1) the subtracted meson–baryon loop function based on dimensional
regularization, cf. Equation (13), which has become the standard regularization method; (2) a
coupled-channel approach to the πΣ mass distribution, which replaced the common assumption
that this process is dominated by the I = 0 πΣ system and thus can be calculated directly from the
πΣ → πΣ S-wave amplitude; and (3) matching formulas to any order in chiral perturbation theory
were established, which allows for a better constraining of such non-perturbative amplitudes. The
most significant finding of that work was, however, the finding of the two-pole structure: “Note that
the Λ(1405) resonance is described by two poles on sheets II and III with rather different imaginary
parts indicating a clear departure from the Breit-Wigner situation”. The location of the poles are:
Pole 1 at (1379.2− i27.6)MeV and pole 2 at (1433.7 − i11.0)MeV on Sheet II, close to the πΣ and
K−p thresholds, respectively. This two-pole structure was also found in follow-up works by other
groups [45,46]. A better understanding of this two-pole structure was achieved in Ref. [47] using SU(3)
symmetry considerations and group theory. For the case under consideration, namely the dynamical
generation of resonances in Goldstone boson scattering off baryons, the following group theoretical
consideration applies: The decomposition of the combination of the two octets, the Goldstone bosons
and the ground-state baryons, is

8⊗ 8 = 1⊕ 8s ⊕ 8a︸ ︷︷ ︸
bindingatLO

⊕10⊕ 10⊕ 27, (18)

where using the leading order WT-term one finds poles in the singlet and in the two octets. The two
octets are degenerate and the poles are located on the real axis (see Figure 3). One can now follow the
developments of these poles in the complex plane. For that, one parameterizes the departure from
the SU(3) limit for the GB (Mi) and baryon masses (mi) and subtraction constants ai (the subtraction
constants can be channel-dependent but collapse to one value in the SU(3) limit) as follows:

M2
i (x) = M2

0 + x(M2
i −M2

0), mi(x) = m0 + x(mi −m0), ai(x) = a0 + x(ai − a0), (19)

with 0 ≤ x ≤ 1, where x = 0 corresponds to the SU(3) limit and x = 1 describes the physical world.
Further, m0 = 1151 MeV, M0 = 368 MeV and a0 = −2.148. The trajectories of the various poles in the
complex plane as the SU(3) breaking is gradually increased up to the physical values at x = 1 is shown
in Figure 3. First, we observe that not all poles present in the SU(3) limit appear for x = 1 (using the
LO WT term only).
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Figure 3. Trajectories of the poles in the scattering amplitudes obtained by changing the SU(3) breaking
parameter x. In the SU(3) limit (x = 0), only two poles appear, one for the singlet and the other for the
octets. The symbols correspond to the step size δx = 0.1 and the two trajectories contributing to the
Λ(1405) are highlighted.

Second, concerning the Λ(1405), we see that the singlet pole moves towards the πΣ threshold and
becomes rather broad, whereas the second pole from the octet comes out close to the K−p threshold
and stays rather narrow. Thus, there are in fact two resonances. Having determined these poles, one
can determine the couplings of these resonances to the physical states by studying the amplitudes in
the vicinity of the poles,

Tij =
gigj

z− zR
+ regularterms, (20)

with i, j channel indices and the couplings gi are complex valued numbers. While the lower pole
couples more strongly to the πΣ channel, the higher one displays a stronger coupling to K̄N.
Consequently, it is possible to find the existence of the two resonances by performing different
experiments, since in different experiments the weights by which the two resonances are excited are
different (see [47] for more details). Further early support of the two-pole scenario was provided by
the leading order investigation of the reaction K−p→ π0π0Σ0 [48].

3.4. Beyond Leading Order

Clearly, to achieve a better precision, one has to go beyond leading order and include the
next-to-leading order (NLO) terms in the chiral SU(3) Lagrangian in the effective potential. This
task was performed by three groups independently [49–51]. These investigations were also triggered
by the precise measurements of the energy shift and width of kaonic hydrogen [52], which was based
on the improved Deser-type formula from Ref. [53], thus resolving the long standing “kaonic hydrogen
puzzle” (the discrepancy between the values of the K̄N scattering lengths extracted from scattering data
or earlier kaonic hydrogen experiments). This allowed to pin down the subthreshold K−p scattering
amplitude to better precision and to make predictions for the K−n scattering lengths. Most importantly,
all of these works confirmed the two-pole structure as shown in Figure 4 based on the results of [51].
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Figure 4. Three-dimensional plot of the two-pole structure of the Λ(1405). W denotes the
center-of-mass energy. Figure courtesy of Maxim Mai.

There was yet another surprise, namely by looking more closely at the scattering and kaonic
hydrogen data, one can find at least eight solutions of similar quality with different pairs of poles
for the Λ(1405) (see [54]). Here, photoproduction comes to the rescue. The CLAS collaboration at
Jefferson Laboratory did a superb job in measuring the Σπ photoproduction line shapes near the
Λ(1405) [55]. These data were first analyzed using LO unitarized CHPT and a polynomial ansatz
for the photoproduction process γp→ K+MiBi in Ref. [56], leading to a good fit of these data and a
further check of the two-pole nature of the Λ(1405). The same ansatz was used in Ref. [54], leaving
only two of the eight solutions, as shown for one of the remaining solutions in Figure 5 for a fraction
of the data (the complete fit is shown in [54]). Similarly, the spread in the two poles from the eight
solutions was sizeably reduced, although the lower pole could not be pinned down as well as the
higher one. This work also supplied error bands, not only for the photoproduction results but also for
the underlying hadronic scattering processes. This shows that the inclusion of the photoproduction
data serves as a new important constraint on the antikaon–nucleon scattering amplitude. In view of
all these NLO results, the two-pole structure first appeared in the RPP in form of a mini-review [57],
called “Pole structure of the Λ(1405) region” co-authored by Hyodo and Meißner, which give also
references to other works related to the two-pole scenario. However, in the RPP summary tables, the
Λ(1405) was listed (and still is) as one resonance only.

Figure 5. Result of the fits to the CLAS data in all three channels π+Σ− (green), π−Σ+(red) and π0Σ0.
Correspondingly, green (dashed), red (full) and blue (dotted) lines represent the outcome of the model
for Solution 4 in the π+Σ−, π−Σ+, π0Σ0 channels, respectively. Figure courtesy of Maxim Mai.

3.5. Where Do We Stand?

A comparative analysis of the theoretical approaches that aim at description of low-energy
meson–baryon interactions in the strangeness S = −1 sector was presented by Cieply et al. [58].
All the models discussed [49–51,59] are derived from a chiral Lagrangian that includes terms up
to NLO, O(p2), with the free parameters fitted to the low-energy K−p reactions data and to the
characteristics of the kaonic hydrogen as measured by the SIDDHARTA collaboration. Thus, the
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various models available on the market were put under a direct comparison aiming at determining
the subthreshold energy dependence of the K̄N scattering amplitudes and on the pole content of the
models related to the dynamically generated baryon resonances. The discussed approaches represent
the variety of different philosophies they are built on. Most of them (the Kyoto–Munich, Murcia and
Bonn ones) use dimensional regularization to tame the ultraviolet divergences in the meson–baryon
loop function and treat the meson–baryon interactions on the energy shell while the Prague model
introduces off-shell form factors to regularize the Green function and phenomenologically accounts
for the off-shell effects. All approaches but the Bonn one are based on a potential concept, introducing
an effective meson–baryon potential that matches the chiral amplitude up to a given order and is then
used as a potential kernel in the Lippmann–Schwinger equation to sum a major part of the chiral
perturbation series. The Bonn model differs by solving a genuine Bethe–Salpeter equation before
making a projection to the S-wave and neglecting the off-shell contributions. Finally, the Kyoto–Munich
and Prague models have relatively small NLO contributions (representing only moderate corrections
to the LO chiral interactions) while the Murcia and Bonn models introduce sizeable NLO terms
that generate inter-channel couplings very different from those obtained by only the WT interaction.
Despite all these differences, the models are able to reproduce the experimental data on a qualitatively
very similar level and in mutual agreement especially concerning the data available at the K̄N threshold.
The models also tend to agree on a position of the higher energy of the two poles generated for the
Λ(1405) resonance, predicting it at the complex energy with the real part <z ≈ 1420 . . . 1430 MeV and
the imaginary part −=z ≈ 10 . . . 40 MeV (see Figure 6).

Re z   (MeV)
1300 1350 1400 1450 1500

-I
m

 z
  
 (

M
e
V

)

0

50

100

150
KM NLO

P NLO

M I

M II

B 2

B 4

Figure 6. Pole positions for various approaches: Kyoto-Munich (KM) [49], Prag (P) [59], Murcia (M) [50]
and Bonn (B) [51].

However, that is about where the agreement among the predictions ends. In particular, these
different approaches lead to very different locations of the lighter pole and different predictions for the
elastic K−p and K−n amplitudes at sub-threshold energies. This certainly has impact on the predictions
one can make (or has made) for kaonic atoms and antikaon quasi-bound states (see, e.g., [60]).

Clearly, we need better data to constrain the πΣ spectra in various processes besides the already
mentioned photoproduction data. A step in this direction was performed by Kamiya et al. [61],
who provided further constraints on the K̄N subthreshold interaction by analyzing πΣ spectra in
various processes, such as the K−d→ πΣn reaction and the Λc → ππΣ decay. In addition, the yet to be
measured 1S level shift of kaonic deuterium will put further constraints on the K̄N interaction [62,63].
For the status of such measurements, see [64]. Further progress has also been made by including the
P-waves and performing a sophisticated error analysis [65], confirming again and sharpening further
the two-pole scenario of the Λ(1405) (note that the P-waves had already been included earlier with a
focus on the S = 0 sector [66]). Despite these remaining uncertainties, it must be stated clearly that the
two-pole nature of the Λ(1405) is established!
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To end this section, I briefly discuss two recent works that challenged the two-pole structure.
It was claimed by Revai [67] that the two-pole nature is an artifact of the on-shell approximation
used in most studies. Including off-shell effects, only one pole is generated in that study. However,
as convincingly shown in Ref. [68], that approach violates constraints imposed by chiral symmetry.
The origin of this violation can be traced back to the off-shell treatment of the chiral-effective vertices,
in combination with the use of non-relativistic approximations and the chosen regularization scheme.
Overcoming these deficiencies, the two-pole scenario reappears. This does not come as a surprise as
the NLO study of Mai and Meißner [51] already went beyond the on-shell approximation. Another
recent paper with only one pole is Ref. [69], based on the phenomenological Bonn–Gatchina (BnGa)
approach. In this framework, a large number of scattering and photoproduction data is fitted. However,
this scheme does not allow for the dynamical generation of resonances and no pole searches in the
complex-energy plane are reported in Ref. [69]. In a recent update, these authors also included a
second pole in their model [70]. They found that the second pole does not considerably worsen the
description of the considered data but still they prefer the solution with one pole. Thus, these results
are not conclusive. In addition, data that further support the two-pole nature on π−p→ K0πΣ and
pp→ pK+πΣ [71] as well as K+Λ(1405) electroproduction [72] are also not included. It can therefore
safely be said that these papers do not challenge the two-pole scenario.

4. Meson Sector: The D∗0 (2300) and Related States

Thus far, one might consider the two-pole structure a curiosity related to just one particular state.
In the meson sector, a similar doubling of states was already considered in 1986 in the discussion
of the mysterious decay properties of the f0(980) (then called δ(980)), but that remained largely
unnoticed [73]. However, let us now take a closer look at the spectrum of the excited charmed mesons,
especially the D∗s0(2317) first observed by BaBar [74] and the D∗0 (2300) first observed by Belle [75] (see
also [76]). According to the recent edition of the PDG, the characteristics of these states are:

D∗0 (2300) : M = 2300± 19MeV, Γ = 274± 40MeV, I(JP) =
1
2
(0+), (21)

D∗s0(2317) : M = 2318.0± 0.7MeV, Γ < 3.8MeV, I(JP) = 0(0+). (22)

According to the quark model, the quark composition for these scalar mesons is cū and cs̄, respectively.
This immediately poses the question: Why is the D∗s0(2317) as heavy as the D∗0 (2300), it should be
about 100 MeV, which is the mass of the strange quark, heavier? In addition, why is the D∗s0(2317)
about 150 MeV below the prediction of the quark model, that has been rather successful [3]? While this
is an interesting question (I refer to the review [77], which has a very detailed discussion of this state),
here I focus on the the non-strange charmed scalar meson, as it appears to be too heavy, but in fact
gives further support to the two-pole scenario.

4.1. Two-Pole Structure

Let us consider first the fine lattice QCD work by the Hadron Spectrum Collaboration, who
investigated coupled-channel Dπ, Dη and DsK̄ scattering with JP = 0+ and I = 1/2 in three
lattice volumes, one value for the temporal and the spatial lattice spacing, respectively, at a pion
mass Mπ = 391 MeV and D-meson mass MD = 1885 MeV [78]. They used various K-matrix type
extrapolations of the type

Kij =
(

g(0)i + g(1)i s
) (

g(0)j + g(1)j s
) 1

m2 − s
+ γ

(0)
ij + γ

(1)
ij s, (23)

to find the poles in the complex plane, by fitting the parameters g, γ to the computed energy levels,
and use the T-matrix to extract the poles. They found one S-wave pole at (2275.0± 0.9)MeV, extremely
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close to the Dπ threshold at 2276 MeV. This state is consistent with the D∗0 (2300) of the PDG. However,
the extrapolations in Equation (23) do not take into account chiral symmetry.

Therefore, this topic was revisited by Albaladejo et al. [79], who implemented the chiral
Lagrangian, Equation (9), together with LECs from Ref. [26] within the finite volume formalism
outlined in Section 2.5 to postdict in a parameter-free manner the energy levels measured by the
Hadron Spectrum Collaboration. The stunning result of this unitarized CHPT calculation is shown
in the left panel of Figure 7; a very accurate postdiction of the lattice levels is achieved (note that
this is not a fit). Note further that the region above 2.7 GeV is beyond the range of applicability of
this NLO calculation. The level below the Dπ threshold is interpreted in Ref. [78] as a bound state
associated to the D∗0 (2300) as stated before. The finite-volume UCHPT calculation also finds this
pole at M = 2264+8

−14 MeV and half-width Γ/2 = 0 MeV, very similar to the results of Moir et al. [78].
However, there is a second pole at M = 2468+32

−25 MeV with Γ/2 = 113+18
−16 MeV (see also Figure 7,

right). Using chiral extrapolations, one can then evaluate the spectroscopic content of the scattering
amplitudes for the physical pion mass, collected in Table 1.

Figure 7. (Left) Energy levels calculated in finite-volume unitarized chiral perturbation theory with
all LECs determined before (red bands representing the 1σ uncertainties) in comparison to the lattice
QCD results of [78] (black circles). The dashed lines give the various free levels of the two-particle
systems Dπ, Dη and DsK̄. (Right) Location of the two poles in the complex energy plane for the lattice
masses (red symbols) and physical masses (blue symbols). The black diamond represents the PDG
value. The various thresholds are indicated by the dotted lines. Figures courtesy of Feng-Kun Guo.

Table 1. Position
√

s = M− iΓ/2 (in MeV) and couplings (in GeV) of the two poles in the (0,1/2) sector
using physical pion masses.

M (MeV) Γ/2 (MeV) |gDπ | |gDη| |gDsK̄|

2105+6
−8 102+10

−12 9.4+0.2
−0.2 1.8+0.7

−0.7 4.4+0.5
−0.5

2451+36
−26 134+7

−8 5.0+0.7
−0.4 6.3+0.8

−0.5 12.8+0.8
−0.6

The bound state below the Dπ threshold evolves into a resonance above it when the physical
masses are used, where the threshold is now at 2005 MeV. This behavior is typical for S-wave poles.
The second pole moves very little and its couplings are rather independent of the meson masses. It is
a resonance located between the Dη and DsK̄ thresholds on the (110) Riemann sheet, continuously
connected to the physical sheet. Thus, the D∗0 (2300) of the RPP is produced by two different poles,
and in fact the lower pole solves the enigma discussed in the beginning of this section. Note that
this two-pole structure was observed earlier by the authors of [80–82] but only explained properly in
Ref. [79], as discussed next.
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Consider again the SU(3) limit, where the eight Goldstone bosons take the common value M0

and the three heavy D-mesons the common value MD0, so that departures from the SU(3) limit are
parameterized as

Mφ,i = Mphys
φ,i + x(M0 −Mphys

φ,i )(i = 1, . . . , 8),

MD,j = Mphys
D,j + x(MD0 −Mphys

D,j )(j = 1, . . . , 3),

with x = 0 and x = 1 corresponding to the physical and the SU(3) symmetric case, respectively, and
M0 = 0.49 GeV and MD0 = 1.95 GeV. In that study, only one subtraction constant for all channels was
used and kept fixed with varying x. Note that in contrast to the work of Jido et al. [47] discussed
above, here a linear extrapolation formula is used for the GB masses, which is also legitimate. As above,
the two-pole nature is understood from group theory,

3̄⊗ 8 = 3̄⊕ 6︸ ︷︷ ︸
attractive

⊕15. (24)

This means one has attraction in the 3̄ and 6 irreducible representations (irreps) but repulsion
in the 15 irrep at leading order in the effective potential. The most attractive irrep, the 3̄, admits a
cq̄ (q = u, d, s) configuration. At NLO, the potentials receive corrections, but the qualitative features
remain. The evolution from the SU(3) limit to the physical case is shown in the left panel of Figure 8.
Shown are the two poles corresponding to the D∗0 (2300) and its strange sibling, the D∗s0(2317). As one
moves away from the SU(3) limit, the lower pole of the D∗0 (2300) moves down in the complex plane,
restoring the expected ordering that the cū excitation should be lighter than its cs̄ partner.

Figure 8. (Left) Pole paths in the complex plane when recovering the SU(3) limit (left subpanel).
Mass evolution of the different poles with x. Besides the two (0,1/2) poles, denoted as high and low
(blue dashed and green solid lines), the evolution of the (1,0) bound state, the D∗s0(2317) resonance
(orange dot-dashed line), is shown on the right. Figure courtesy of Feng-Kun Guo. (Right) Mass of the
predicted sextet state M6 at the SU(3) symmetric point as a function of the Goldstone boson mass Mφ.
The inset shows the half-width of the resonance for GB masses below 475 MeV.

It was already observed in Ref. [79] that the higher pole connects with a virtual state in the sextet
representation due to the weaker binding. This issue was further elaborated on by Du et al. [83],
who studied the SU(3) limit in more detail. In the right panel of Figure 8, the sextet pole is shown
for varying GB masses. Below Mφ . 475 MeV, the pole is a resonance with its imaginary part (Γ6/2)
shown in the inserted sub-figure. Above Mφ ' 475 MeV, it evolves into a pair of virtual states, and
finally it becomes a bound state at Mφ ' 600 MeV. Such a study in the SU(3) limit mu = md = ms at
large GB masses could be performed on the lattice and offer another test of this scenario. Finally, let
me come back to the lattice calculation in Ref. [78]. Indeed, while various of the amplitudes employed
in that analysis contained a second pole, its location was strongly parameterization-dependent [84],
and therefore not reported in that paper.
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4.2. Other Candidates

As already noted, in the (S, I) = (1, 0) sector, the same chiral Lagrangian produces a pole at
2315+18

−28 MeV which is naturally identified with the D∗s0(2317). It emerges from the pole in the triplet
representation. The D∗s0(2317) is dominantly a DK molecule. Substituting the D-meson by a D∗ and
employing HQSS, the molecular picture naturally gives [85]

MDs1(2460) −MD∗s0(2317) ' MD∗ −MD, (25)

which is also obtained in the so-called doublet model [86–88]. Similar to the D∗0 (2300), the nonstrange
charmed meson D1 also comes with two poles (see Table 2). This was noted before by Guo et al. [89].
In both cases, the single RPP pole sits in between the lower and the higher pole.

Using HQFS, one can further predict similar states in the B-meson sector, by just replacing the
corresponding D-mesons with their bottom counterparts at leading order [81,85]. Using the NLO
framework employed in the charm sector, one has to scale the LECs h0,1,2,3 ∼ mQ and h4,5 ∼ 1/mQ
and the subtraction constant is adjusted, as described in Ref. [81]. This leads again to the two-pole
structures also collected in Table 2.

For the lowest positive-parity heavy strange mesons, it is instructive to compare with lattice
QCD results. This gives for the masses of the charm-strange mesons MD∗s0

= 2315+18
−28[2348+7

−4] [90],
MDs1 = 2456+15

−21[2459.5± 0.6] [90], and for the strange-bottom ones MB∗s0
= 5720+16

−23[5711± 23] [91],
MDs1 = 5772+15

−21[5750± 25] [91], where the first (second) number refers to the molecular (lattice QCD)
prediction. The agreement is rather remarkable.

Table 2. Predicted poles corresponding to the positive-parity heavy-light nonstrange mesons given as
(M, Γ/2), with M the mass and Γ the total decay width, in units of MeV. The current RPP [4] values are
listed in the last column.

Lower Pole Higher Pole RPP

D∗0
(

2105+6
−8, 102+10

−11

) (
2451+35

−26, 134+7
−8

)
(2300± 19, 137± 20)

D1

(
2247+5

−6, 107+11
−10

) (
2555+47

−30, 203+8
−9

)
(2427± 26± 25, 192+54

−38 ± 37)

B∗0
(

5535+9
−11, 113+15

−17

) (
5852+16

−19, 36± 5
)

-

B1

(
5584+9

−11, 119+14
−17

) (
5912+15

−18, 42+5
−4

)
-

Thus, the plot of the two-pole scenario thickens. In the absence of direct measurements of some of
these states, one might ask the question: Is further experimental support for the picture just outlined?

4.3. Analysis of B→ Dππ Data

To further test the mechanism of the dynamical generation of the charm-light flavored mesons
discussed thus far, let me turn to the high precision results of the LHCb collaboration for the decays
B→ Dππ [92]. As shown in Ref. [83], the amplitudes with the two D∗0 states are fully consistent with
the LHCb measurements of the reaction B− → D+π−π−, which are at present the best data providing
access to the Dπ system and thus to the nonstrange scalar charm mesons. This information is encoded
in the so-called angular momenta, which are discussed in detail in the LHCb paper [92].

The theoretical framework to analyze this process is based on the unitarized chiral effective
Lagrangian, Equation (10), where one pion is fast and the other participates in the Dπ final-state
interactions (for more details, see [83]). To be specific, consider the reaction B− → D+π−π−.
For sufficiently low energies in the Dπ system, it suffices to include the lowest partial waves (S,P,D),
so we can write the decay amplitude as
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A(B− → D+π−π−) =
2

∑
L=0

√
2L + 1AL(s)PL(z) , (26)

where A0,1,2(s) correspond to the amplitudes with D+π− in the S-, P- and D-waves, respectively, and
PL(z) are the Legendre polynomials. For the P- and D-wave amplitudes, we use the same Breit–Wigner
form as in the LHCb analysis [92], containing the D∗ and D∗(2680) mesons in the P-wave and the
D2(2460) in the D-wave. For the S-wave, however, we employ

A0(s) = A
{

Eπ

[
2 + G1(s)

(
5
3

T1/2
11 (s) +

1
3

T3/2(s)
)]

+
1
3

EηG2(s)T1/2
21 (s) +

√
2
3

EK̄G3(s)T1/2
31 (s)

}
+ BEηG2(s)T1/2

21 , (27)

where A and B are two independent couplings following from SU(3) flavor symmetry (i.e.,
combinations of the LECs ci, A =

√
2(c1 + c4)/Fφ and B = 2

√
2(c2 + c6)/(3Fφ), with Fφ the GB

decay constant), and Eπ,η,K̄ are the energies of the light mesons. Further, the T I
ij(s) are the S-wave

scattering amplitudes for the coupled-channel system with total isospin I, where i, j are channel indices
with 1, 2 and 3 referring to Dπ, Dη and DsK̄, respectively, and the Gi(s) are the corresponding 2-point
loop functions. These scattering amplitudes are again taken from Ref. [26] where also all the other
parameters are fixed. To filter out the S-wave, the following (combinations of) angular moments
are used:

〈P0〉 ∝ |A0|2 + |A1|2 + |A2|2,

〈P2〉 ∝
2
5
|A1|2 +

2
7
|A2|2 +

2√
5
|A0||A2| cos(δ2 − δ0),

〈P13〉 = 〈P1〉 −
14
9
〈P3〉 ∝

2√
3
|A0||A1| cos(δ1 − δ0), (28)

with δ0, δ1, δ2 the S-, P- and D-wave phase shift, respectively.
The best fit to the LHCb data is shown in Figure 9 together with their best fit provided by LHCb

based on cubic splines (dashed lines). The bands in Figure 9 reflect the one-sigma errors of the
parameters in the scattering amplitudes determined in Ref. [26]. It is worthwhile to notice that, in
〈P13〉, where the D2(2460) does not play any role, the data show a significant variation between 2.4 and
2.5 GeV. Theoretically, this feature can now be understood as a signal for the opening of the D0η and
D+

s K− thresholds at 2.413 and 2.462 GeV, respectively, which leads to two cusps in the amplitude. This
effect is amplified by the higher pole which is relatively close to the DsK̄ threshold on the unphysical
sheet. There is some discrepancy between the chiral amplitude and the data for 〈P13〉 at low energies:
Does this point at a deficit of the former? Fortunately, the LHCb Collaboration provided more detailed
information on their S-wave amplitude in Ref. [92]: in the analysis of the data, a series of anchor points
were defined where the strength and the phase of the S-wave amplitude were extracted from the data.
Then, cubic splines were used to interpolate between these anchor points.

In Figure 10, the S-amplitude fixed as described above is compared to the LHCb anchor points.
Not only does this figure show very clearly that the strength of the S-wave amplitude largely
determined by the fits to lattice data is fully consistent with the one extracted from the data for
B− → D+π−π−, but the presented amplitude also shows the importance of the Dη and DsK̄ cusps
and thus also of the role of the higher pole in the I = 1/2 and S = 0 channel even more clearly than
the angular moments discussed above. This clearly highlights the importance of a coupled-channel
treatment for this reaction. An updated analysis of the LHC Run-2 data is called for to confirm the
prominence of the two cusps.
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Figure 9. Fit to the LHCb data for the angular moments 〈P0〉, 〈P13〉 and 〈P2〉 for the B− → D+π−π−

reaction [92]. The largest error among 〈P1〉 and 14〈P3〉/9 in each bin is taken as the error of 〈P1〉 −
14〈P3〉/9. The solid lines show the results of Du et al. [83], with error bands corresponding to the
one-sigma uncertainties propagated from the input scattering amplitudes, while the dashed lines stand
for the LHCb fit using cubic splines for the S-wave [92].

LHCb presented also data on B0
s → D̄0K−π+, which are, however, less precise than the ones

just discussed. Using the same formalism as before, with one different combination of the LECs ci
and the same resonances in the P- and D-wave as LHCb, these data can be well described by a one
parameter fit (see [83] for more details). A combined analysis including also data for B0 → D̄0π−π+,
B− → D+π−K− and B0

s → D̄0K−π+ performed in Ref. [93] gives further credit to this picture.

6

2 2.1 2.2 2.3 2.4 2.5 2.6
M

Dπ [GeV]

0

0.2

0.4

0.6

0.8

S
-w

av
e 

A
m

p
li

tu
d
e 

[a
rb

. 
u
n
it

s]

Dη D
s
K

FIG. 4. Comparison of the S-wave amplitude determined in
this work to the S-wave anchor points found in the experi-
mental analysis, shown as the data points [46]. The red line
gives the best fit results and the grey band quantifies the
uncertainties that emerged from the fitting procedure. The
fitting range extended up to 2.55 GeV. The dashed perpendic-
ular lines indicate the location of the Dη and DsK̄ threshold,
respectively.

the B → D(∗)ππ and B → D
(∗)
s K̄π reactions. This

can be done at LHCb and Belle-II. We expect to see

nontrivial cusp structures at the D(∗)η and D
(∗)
s K̄

thresholds in the former, and near-threshold en-

hancement in theD
(∗)
s K̄ spectrum in the latter [37].

• Measuring the hadronic width of the D∗s0(2317),
predicted to be of about 100 keV in the molecu-
lar scenario [32, 55], while much smaller otherwise.
This will be measured by the PANDA experiment.

• Checking the existence of the sextet pole in LQCD
with a relatively large SU(3) symmetric quark
mass.

• Searching for the predicted analogous bottom
positive-parity mesons both experimentally and in
LQCD.
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Appendix A: Effective Lagrangian

Here, we discuss briefly the effective Lagrangian for the
weak decays B̄ to D with the emission of two light pseu-
doscalar mesons, induced by the Cabibbo-allowed tran-
sition b → cūd. In the phase space region near the Dπ
threshold, chiral symmetry puts constraints on one of
the two pions while the other one moves fast and can
be treated as a matter field. Moreover, its interaction
with the other particles in the final state can be safely
neglected. Then the relevant chiral effective Lagrangian
leading to Eq. (2) reads,

Leff = B̄
[
c1 (uµtM +Mtuµ) + c2 (uµM +Muµ) t

+c3 t (uµM +Muµ) + c4 (uµ〈Mt〉+M〈uµt〉)
+c5 t〈Muµ〉+ c6〈(Muµ + uµM) t〉

]
∂µD† . (A.1)

Here, B̄ = (B−, B̄0, B̄0
s ) and D = (D0, D+, D+

s ) are the
fields for bottom and charm mesons, 〈. . .〉 denotes the
trace in the SU(3) light-flavor space, and uµ = i(u†∂µu−
u∂µu

†) is the axial current derived from chiral symmetry.
The Goldstone Bosons are represented non-linearily via
u = exp

(
iφ/(
√

2F )
)
, with

φ =




1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η


 , (A.2)

Figure 10. Comparison of the S-wave amplitude based on UCHPT to the S-wave anchor points found
in the experimental analysis, shown as the data points [92]. The red line gives the best fit results
and the grey band quantifies the uncertainties that emerged from the fitting procedure. The fitting
range extends up to 2.55 GeV. The dashed perpendicular lines indicate the location of the Dη and DsK̄
threshold, respectively.

4.4. The K1 Meson

Another state that offered support to the two-pole scenario even before the heavy-light mesons
just discussed is the axial-vector meson K1(1270), which in the quark model is a kaonic excitation with
angular momentum one, I(JP) = 1

2 (1
+). The two-pole nature of the K1(1270) was first noted in the

study of the scattering of vector mesons off the Goldstone bosons in a chiral unitary approach at tree
level [94]. This was further sharpened by Geng et al. [95]. There, the high-statistics data from the WA3
experiment on K−p→ K−π+π−p, analyzed by the ACCMOR collaboration [96], were reanalyzed and
shown to favor a two-pole interpretation of the K1(1270). Geng et al. [95] also reanalyzed the traditional
K-matrix interpretation of the WA3 data and found that the good fit of the data obtained there was
due to large cancellations of terms of unclear physical interpretation. It was recently shown how this
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two-pole scenario can show up in D-meson decays, in particular D0 → π+VP and D+ → νe+VP,
where P and V are pseudoscalar and vector mesons, respectively [97,98].

5. Discussion and Outlook

Let me summarize briefly:

• The story with the two-pole structure started with the Λ(1405), which can now be considered
as established. However, the position of lighter pole close to the πΣ threshold needs to be
determined better, whereas the higher pole close to the K−p threshold is pretty well pinned down.
It is comforting to note that the re-analysis of the Jülich K̄N meson-exchange model from the 1990s
also confirmed the two-pole structure of the Λ(1405) (see [99] and references therein). I again
point out that approaches that do not allow for the dynamical generation of resonances, e.g., the
BnGa model, are insufficient for describing the whole hadron spectrum.

• Further support of the two-pole scenario comes from charmed baryons. Recently, an analysis
of the LHCb data on Λb → pD0π− in the near-pD0-threshold region also revealed a two-pole
structure of the Σc(2800)+ when isospin-breaking is taken into account [100].

• The spectrum of excited charmed mesons, made from a heavy c quark and a light u, d, s quark,
offers further support of the two-pole structure and the dynamical generation of hadron resonances.
Here, a beautiful interplay of experimental results, unitarized chiral perturbation theory and lattice
QCD gives very strong indications that this picture is indeed correct. Further lattice calculations
and the measurement of the corresponding B-mesons will serve as further tests.

• This leads to a new paradigm in hadron physics: The hadron spectrum must not be viewed as a
collection of quark model states, but rather as a manifestation of a more complex dynamics that
leads to an intricate pattern of various types of states that can only be understood by an interplay
of theory and experiment (cf. the light scalar mesons or the states discussed here).

• The dynamical generation of hadron states through hadron–hadron interactions ties together
nuclear and particle physics, as these molecular compounds bear resemblance to the light nuclei,
the deuteron, the triton and so on. Therefore, such molecular states were called “deusons” by
Törnquist, one of the pioneers in the field of hadronic molecules [101].

From all this, it is rather obvious that the PDG tables published in the RPP must undergo a drastic
change and finally acknowledge the two-pole structure in the main listings, not just in the review
section. Time will tell how long this necessary change will take.
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