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The static quadrupole moments (SQMs) of nuclear chiral doublet bands are investigated for the first time
taking the particle-hole configuration m(1h11,2) ® v(1hyy /2)*‘ with triaxial deformation parameters in
the range 260° <y < 270° as examples. The behavior of the SQM as a function of spin I is illustrated
and analyzed. It is found that in the region of chiral vibrations the SQMs of doublet bands are strongly
varying with I, whereas in the region of static chirality the SQMs of doublet bands are almost constant.

Hence, the measurement of SQMs provides a new criterion for distinguishing the modes of nuclear
chirality. Moreover, in the high-spin region the SQMs can be approximated by an analytic formula with a
proportionality to cosy for both doublet bands. This provides a way to extract experimentally the triaxial
deformation parameter y for chiral bands from the measured SQMs.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

The phenomenon of nuclear chirality can appear in a fast rotat-
ing nucleus with a triaxially deformed core and high-j valence par-
ticles and holes [1]. In the body-fixed frame, the angular momenta
of the valence particles and holes are aligned along the short and
long axes of the triaxial core, respectively, while the angular mo-
mentum of the rotational core is aligned along the intermediate
axis. Then, the left-handed and right-handed orientation of the
three angular momenta are degenerate, and a spontaneous break-
ing of this chiral symmetry may happen. In the laboratory frame,
due to the requirements of time-reversal invariance and quantum
mechanical tunneling of the total angular momentum between the
left-handed and right-handed configurations, the chiral symmetry
is, however, restored. As a consequence, chiral doublet bands, i.e.
pairs of nearly degenerate Al =1 bands with the same parity, are
expected to be observable [1].

Up to now, more than 50 candidates for this phenomenon have
been observed in the mass regions A ~ 80, 100, 130, and 190.
For recent reviews on the subject, see Refs. [2-9] and the cor-
responding data tables in Ref. [10]. After the prediction [11] and
confirmation [12] of multiple chiral doublet bands in a single nu-
cleus, the investigation of chirality continues to be very interesting
in nuclear structure physics.
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Besides the energy spectra, the electromagnetic transition
strengths are important observables for identifying nuclear chi-
rality. Based on a model with the configuration m(1h112) ®
v(lhn/z)*l and a triaxial deformation parameter y = 30°, the cri-
teria for ideal nuclear chirality are according to Refs. [1,2,5,13-21]
similar intra-band and inter-band reduced magnetic dipole (M1)
and electric quadrupole (E2) transition strengths.

The search for additional observables that characterize nuclear
chirality is still an interesting question. Very recently, the first
measurement of the g-factor (gyromagnetic ratio) in a chiral band
has been carried out for the bandhead of ?8Cs [22]. The g-
factor can give important information on the relative orientation
of the three angular momentum vectors of the particle, the hole,
and the nuclear core. It can also be used to discern whether the
three angular momentum vectors lie in a plane (planar configura-
tion, known as chiral vibration) or whether they span the three-
dimensional space (aplanar configuration, known as static chiral-
ity).

In this work the static (electric) quadrupole moments (SQMs)
[also called spectroscopic quadrupole moments] of nuclear chiral
doublet bands will be investigated for the first time. As will be
seen from the following discussions, the SQM is related to the
intrinsic deformation parameter (a static property) and the ori-
entation of the total angular momentum (a dynamic property) of
the nuclear system. The SQM provides some essential information
about the charge distribution associated with the rotational mo-
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tion, and it helps to discern whether the angular momenta have
formed configurations related to chiral vibration or static chirality.

Our calculations are based on the particle rotor model (PRM),
which has been widely used to describe chiral doublet bands and
has achieved major successes in this respect [1,7,13,23-30]. It is
a quantum mechanical model that combines the collective rota-
tional motion and the intrinsic single-particle motions, describ-
ing the nuclear system in the laboratory frame. Its Hamiltonian
is diagonalized in states with the total angular momentum as a
good quantum number. The energy splitting and quantum me-
chanical tunneling probabilities between the doublet bands can
be obtained directly from the diagonalization process. Actually,
the basic input to the PRM can be obtained from covariant den-
sity functional theory (CDFT) [11,31], for practical applications, see
Refs. [12,20,22,28,32-36]. Hence, the PRM can be used straightfor-
wardly to investigate the SQMs of chiral doublet bands.

In the PRM the Hamiltonian for a system with one proton and
one neutron coupled to a triaxial rigid (collective) rotor is com-
posed as [1,7,13,23-30]

I:IPRM=I:ICOII+I:Ip+I:In7 (1)

where Ho represents the Hamiltonian of the rigid rotor,

3 p2 3 4 ~ SN2
- R Uk — Jpk — Jnk)
H = —k = —P 2
coll k}_l ij kE_] 2\7k s ( )

with the index k =1, 2, 3 referring to components along the three
principal axes in the body-fixed frame. Here, kk and ik are the
angular momentum operators of the collective rotor and the total
nucleus, while j,my is the angular momentum operator of the va-
lence proton (neutron). Moreover, the parameters Jj are the three
principal moments of inertia.

The Hamiltonians H p and A, describe a single proton and neu-
tron outside of the rotor. For a nucleon in a j-shell orbital, I:Ip(n)
is given by

A C A i(j+1 siny . A
Hp(n):iiicosy[]g_ﬂjg_)]qL2\/2(11+12_)}, (3)
where the sign + refers to a particle or hole and y is the triaxial
deformation parameter. The coupling parameter C is proportional
to the quadrupole deformation parameter B of the rotor.

The PRM Hamiltonian in Eq. (1) can be solved by diagonaliza-
tion in the strong-coupling basis [37,38]

ljpS2pinS2nK, IM)

1
=£[|jpszp>|jnszn>|m1<>

+ (=D — @) — @) IM = K) ], (4)

where I denotes the total angular momentum quantum number
of the odd-odd nuclear system (rotor plus proton and neutron)
and M (K) refers to the projection onto the z-axis (3-axis) in
the laboratory (intrinsic) frame. Furthermore, Qp ) is the quantum
number for the 3-axis component of the valence nucleon angular
momentum operator j,q in the intrinsic frame, while the states
[IMK) are represented in terms of three Euler angles (v, 6, ¢’)

by the conventional Wigner-functions Zg%lefw,K(‘/’/’ 0’,¢"). Un-
der the requirement of the D, symmetry of a triaxial nucleus [37],
K and €2, take the values: K =—I,...,I and Qp = —jp,..., jp.
The quantum number €2, goes over the range Q, = —jn,..., jn
and it has to fulfill the condition that Kz = K — Q) — €, is a pos-

itive even integer.

The PRM eigenfunctions are expressed in the strong-coupling
basis as

IM)y=>"" fik,e,lipQpinK, IM), (5)
KQpSn
where the coefficients fixq,q, are obtained by diagonalizing the

Hamiltonian Hpgy. With the obtained wave functions the SQMs
are calculated as [37,38]

Q) = (111Qa0ll1), (6)

where the quadrupole momentum operator in the laboratory frame
Qo is related to the intrinsic quadrupole moment Qév by

Q20 =ZD3,VQ§,,, (7)

with Q5 = Qjcosy, Q4 =Qj_; =0, Q5 = Q5_, = Qqsiny/v2.
Here, Q| is an empirical quadrupole moment that is related to the
axial deformation g by Q)= 3R§Z/3/«/§. where Z is the proton
number and Ryo = 1.2fm A'/3. One can finally obtain the SQM for
each band as

Q) =(1120111) Y ¥~ fika, 0. fika,,

QpQn KK’

X Y (IK'20|1K) Q). (8)

The computation of the SQM is straightforward with the given
PRM wave function. In the following, we give two alternative ways
of calculating the SQM.

On the one hand, one consider the following relations between
Wigner-functions ngv in Eq. (7) and certain angular momentum
operators when acting on the states |II) [39]

32— 11+ 1)

D§ oIy = mm), 9)

DG |I) =ﬁL|u>, (10)
: 2(+1)2I+3)

D2 2|11>=\/§L|11>, (11)
o 2(+1DHRI+3)

with the raising and lowering operators ii = i1 + iiz. Therefore,
one gets a decomposition into two contributions

Q) = Qo) + Q2(D), (12)
3 -1a+1

Qo(h = T+ D@I13) Qqcosy, (13)
B =By,

Qz(l)—7(1+1)(21+3) Qgsiny. (14)

In the case of prolate deformation y = 0°, and if the third com-
ponent of the angular momentum (I3) = K is a good quantum
number, the part Q,(I) vanishes and Q (I) becomes

3K2—1(14+1) _,
ESEER (1)

This famous formula has already been given in textbooks (e.g.,
Refs. [37,38]). It is often used to extract the intrinsic quadrupole
moment Q/ of an individual state from the measured Q (I)-values
for an axially deformed nucleus.

On the other hand, if the z-axis in the laboratory frame is cho-
sen along the angular momentum I (which is realized by M =1I),

Q)=
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the Euler angles (v, 0’, ¢’) and the tilted angles (6, ¢) are related
in the following way

0=0', p=m—¢. (16)

Here, 6 is the angle between the total spin I and the 3-axis, and
the ¢ is the angle between the projection of total spin I onto the
1-2 plane and the 1-axis. With this connection one can express the
quadrupole moment operator 040 a function of 6 and Q.

The Wigner-functions at ¥’ = 0 have the form

1
D3 60,6, ¢') = 5(3c0529 -1, (17)
3 )
D},(0,0",¢) = \/;sinz fe=%¥, (18)
3 )
D§ _,(0,0',¢") = \/;sinz e, (19)
and hence,

A 1
Q20(0. ) = 5(3 cos?6 —1)Qcos y

3
+ % sin® 0 (cos® ¢ — sin? @) Q} siny . (20)

Once the probability distribution of the orientation of the to-
tal angular momentum P (6, ¢) (called azimuthal plot [40-42]) is
known, the SQM can be calculated as a solid angle integral

T 2w
Q) = / singde / dg Q20(6. 9YP (6. ). (21)
0 0

Combining Eqgs. (12) and (20), one can find interesting relation-
ships between expectation values of the tilted angles (9, ¢) and
the angular momentum components I,

() + I +1)/2

2 2\

(sin® 6 cos® @) = T+ D013/2)" (22)
)

(sin® 0 sin® @) = M (23)
I+ 1A +3/2)
)

(c052 ) = M (24)

(I+1)(I+3/2)

It follows immediately that

(sin29cos2 Q)+ (sinzesin2 o)+ (cosze) =1 (25)

holds, consistent with the normalization of the PRM wave function.
Especially, at I =0 one has (i,f) =0 and gets an isotropic angular
distribution (sin? @ cos? @) = (sin’ @ sin® @) = (cos2 @) = 1/3.

In the calculations of the chiral doublet bands for the configura-
tion 77 (1h11/2)! ® v(1h11/2) 7! the deformation parameter g = 0.23
is fixed and the chosen coupling coefficients are C, = 0.32 MeV
and C, = —0.32 MeV, in accordance with standard values for the
mass region A ~ 130. For the moments of inertia, the irrotational
flow formula J, = Jp sinz(y — 2kmr /3) with Jp =30 hz/MeV is
used. In addition, the value Qé = 3.5 eb is chosen for the empiri-
cal electric quadrupole moment.

The present studies focus on the following values of the triax-
ial deformation parameter: y = 270°, 269°, 267°, 265°, 263°, and
260°. With these specifications of y, the 1-axis, 2-axis, and 3-axis
are the short (s), long (I), and intermediate (m) axes of the tri-
axially deformed ellipsoid, respectively. Note that the moment of
inertia J; with respect to the m-axis is the largest for all selected
y-values. The moment of inertia Js is equal to J; at y = 270°,
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Fig. 1. Static quadrupole moments of yrast (a) and yrare (b) bands calculated in the
PRM for the configuration 7 (1h11/2)! ® v(1h112)~" with y = 270°, 269°, 267°,
265°, 263°, and 260°. The lines for the yrast band are given by Eq. (26) and for
the yrare band by Eq. (27). (c) The corresponding difference of static quadrupole
moments between the yrare and yrast bands at y =270°, 265°, 260°.

while it is a bit larger than ) for the other y-values. Moreover,
for the particle-hole configuration 7 (1h11,2)! ® v(1h112)~! with
this range of y, there occurs the so-called chiral geometry in a
certain spin-region, according to the investigations presented in
Refs. [1,17,27,29,41,43,44]. We refer to these papers for the corre-
sponding results concerning energy spectra, electromagnetic tran-
sition probabilities, and the entire angular momentum geometry.

The corresponding SQMs of yrast and yrare bands as calculated
in the PRM are shown in Fig. 1. Its contributions Qo(I) and Q3 (I)
as calculated by Eqgs. (13) and (14) are shown in Fig. 2.

These two figures display the variation of the SQMs with the
triaxial deformation parameter y. At y = 270°, the SQMs of the
yrast and yrare bands are both zero over the entire spin region.
The vanishing values of Qg(I) result from the fact that Qg(I)
and Q3(I) are both zero. Note that Qg(I) = 0 stems from the
static property cos270° =0, and Q»(I) =0 has a dynamical ori-
gin, namely (12) = (1?) as will be demonstrated in Fig. 3.

When y deviates from 270°, the values of Q (I) do not van-
ish any longer. At several low-spins, the SQMs come out positive.
With increasing spin, Q (I) decreases first, then shows a rapid in-
crease, and finally becomes almost constant. One can observe that
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Fig. 2. Contributions to the static quadrupole moment Qo(I) (a) and Qa(I)

(b) for doublet bands calculated in the PRM for the particle-hole configuration
7 (1h112)' ® v(1h112)~" with y =270°, 265°, and 260°.
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Fig. 3. Root mean-square values of the total angular momentum components along
the short (s-, circles), long (I-, triangles), and intermediate (m-, squares) axes as
functions of the spin I in the PRM for doublet bands at y =270°, 265°, and 260°.
The dashed lines represent the average quantity /I(T+ 1)/3.

with decreasing deformation parameter y, the static quadrupole
moment Q (I) decreases in the high-spin region.

An interesting finding about Q (I) at high-spin I is that it can
be well approximated by an analytic formula for both doublet
bands. For the yrast band, the formula reads

3P —1d+1) _,

Q(I)Zoncos% (26)
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while for the yrare band, it is

31+3/2)% - 1d+1
(U+3/2° 1041 0 o7
I+1D@I+3)
Using these relations, one can extract the triaxial deformation pa-

rameter (located in the range 240° <y < 300°) from the experi-
mentally measured Q (I)-values as

Q)=

{ Q) I+ D@l +3)}
y = arccos { — (28)
Q) 32—I1(+1)
for the yrast band, and
{ Q) I+1)@2I+3) }
y = arccos ; (29)
Q) 3U0+3/22—1(+1)

for the yrare band, assuming a common value of Q.

Moreover, the above connections together with Eqs. (12)-(14)
suggest that the three expectation values (?,3) of (squared) angular
momentum components satisfy in the high-spin region the (ap-
proximate) relations,

—(? ~tany (30)

for the yrast band, and

V3L +3/2)2 — (12)]
(13) — (If)
for the yrare band.

In order to understand better the behavior of the Q (I)-values
in Fig. 1, we have also shown the individual contributions Qq(I)
and Q2 (I) at y =270°, 265°, and 260°. One can see that generally
Qo(I) is much smaller than Q2(I), due to the suppression by the
factor cosy (a static property). Hence, the behavior of Q(I) as a
function of spin I is mainly determined by Q> (I). In particular, this
explains the decreasing trend visible in the low-spin region.

In order to present more details, we show in Fig. 3 the root
mean-square values of the total angular momentum components
along the s-axis, l-axis, and m-axis (I; = (I2)!/2, I, = (1})'/2,
and I, = (12)"/2) as functions of the spin I for the doublet
bands at y = 270°, 265°, and 260°. The corresponding orienta-
tion components, defined as the expectation values (sin® 6 cos? ),
(sin® @ sin? @), and (cos?@) according to Eqs. (22)-(24) are dis-
played in Fig. 4. The dashed lines at height \/I(I + 1)/3 and 1/3
refer to completely isotropic distributions.

Obviously, the equalities I; = I; and (sin?# cos? Q) =
(sin® @ sin® @) hold at y = 270°. This is a consequence of the sym-
metric configuration of the proton-particle (mainly aligning along
the s-axis) and the neutron-hole (mainly aligning along the [-axis)
as well as the equivalence of the moments of inertia with re-
spect to the s-axis and [-axis. As mentioned above, this coincidence
causes Qz(I) =0 at y =270°.

When y deviates from 270°, I is no longer equal to I;. For
the yrast band, I is in general larger than I; since Js > 7. Con-
sequently, Q2 (I) of the yrast band becomes negative, noting that
siny is negative. For the yrare band, I is smaller than I; in the
region I < 12h. Correspondingly, the contribution Q3(I) as well as
the total Q (I) are positive as shown in Figs. 2 and 1. At I > 13h,
one has Is > Ij, similar to the situation in the yrast band. These
features generate the (chiral) picture of a left-handed and a right-
handed configuration in the body-fixed frame in the spin region
15<1<18h.

The component I; increases with spin. For the yrast band, in
the region with I < 14h and I, < 4/I(I + 1)/3, corresponding to

A tany (31)
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Fig. 4. Expectation values of (sin® 6 cos? ¢), (sin® 6 sin? @), and (cos? 0) derived from
Egs. (22)-(24) for the doublet bands at y = 270°, 265°, and 260°. The dashed line
represents the isotropic average value 1/3.

(cos? @) < 1/3, the total angular momentum is located close to the
sl-plane. This gives positive Qq(I)-values as shown in Fig. 2 (not-
ing that cos y is negative). In this region, I, is smaller than I; and
I;. This is due to the fact that the collective rotor motion has just
started at the bandhead of the doublet bands. The component Ip,
is larger in the yrare band than in the yrast band, which can be
attributed to the oscillations of the total angular momentum be-
tween the left-handed and the right-handed configuration (about
the sl-plane). This phenomenon is known as the chiral vibration.
Accordingly, the contribution Qqo(I) of the static quadrupole mo-
ment is smaller in the yrare band than in the yrast band, as
shown in Fig. 2. In the spin region 15 < I < 18h, the component
Im and (cos? @) behave similarly in both doublet bands, which cor-
responds to the phenomenon of static chirality. Consequently, the
static quadrupole moments Q (I) in both doublet bands are close
to each other in this spin region.

In Fig. 1, we show furthermore the difference of SQMs between
the yrare and yrast bands at deformation parameters y = 270°,
265°, and 260°. According to the above analysis, when y deviates
from 270°, the differences of the SQMs between the doublet bands
can be interpreted as the chiral vibration, and the similar SQMs
are attributed to the static chirality. Therefore, a measurement of
static quadrupole moments can provide a new criterion for nuclear
chirality.

In summary, the SQMs of chiral doublet bands have been in-
vestigated for the first time taking the particle-hole configuration
w(1h112) ® v(lhn/zf1 with triaxial deformation parameters in
the range 260° < y < 270° as examples. The behavior of the SQMs
as a function of spin I is illustrated by analyzing the components
of the total angular momentum. Pronounced differences of the
SQMs between the doublet bands are attributed to the chiral vi-
bration, whereas their similarity signifies the static chirality. This
provides a new criterion to distinguish the modes of nuclear chi-
rality. Moreover, it is found that in the high-spin region the SQMs
can be approximated by an analytic formula with a proportionality
to cosy for both doublet bands. It provides a way to extract ex-
perimentally the triaxial deformation parameter y of chiral bands
from the measured SQMs. In view of this connection, experimental
measurements of SQMs for the chiral doublet bands are strongly
suggested.
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