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Abstract Integral equations for meson–baryon scattering
amplitudes are obtained by utilizing time-ordered pertur-
bation theory for a manifestly Lorentz-invariant formula-
tion of baryon chiral perturbation theory. Effective potentials
are defined as sums of two-particle irreducible contributions
of time-ordered diagrams and the scattering amplitudes are
obtained as solutions of integral equations. Ultraviolet renor-
malizability is achieved by solving integral equations for the
leading order amplitude and including higher order correc-
tions perturbatively. As an application of the developed for-
malism, pion-nucleon scattering is considered.

1 Introduction

Understanding meson–baryon scattering processes at low
and intermediate energies involving strangeness is a non-
trivial problem. One often uses the so-called chiral uni-
tary approach (see e.g. Ref. [1] for an early review), which
involves a non-perturbative resummation of the chiral ampli-
tude to extend the range of applicability of low-energy effec-
tive field theory (EFT) into the resonance region. This, how-
ever, comes with certain shortcomings as discussed below.
So far, a variety of unitarization methods have been pro-
posed. In the pioneering work by the Munich group [2–
4], the Lippmann-Schwinger equation in coupled channels
were used to iterate the leading order (LO) kernel in the
region of the �(1405) and N∗(1535) resonances, employ-
ing Gaussian regulators to tame the UV behaviour of the
chiral potential. In Refs. [5,6], the relativistic counterpart
of the scattering equation, the Bethe–Salpeter equation, was
employed to sum up the iterations of the covariant interac-
tion kernel. Besides, different frameworks were subsequently
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developed based on the inverse amplitude method (IAM) [7–
9], the N/D method (based on dispersion relations) [10,11]
and the Bethe–Salpeter equation supplemented by large-NC

constraints [12], to name a few. Clearly, having such a variety
of unitarization schemes introduces some model-dependence
in the chiral unitary approach, which can be minimized if one
enforces a matching to the perturbative amplitudes, as sug-
gested in [11].

Chiral unitary approaches have been used to describe
hadron scattering amplitudes and interpret the molecular
components of resonances. Arguably the most striking result
of this method is the interpretation of the �(1405) resonance
as a superposition of two states [11,13]. To identify the nature
of resonances, one has to carefully derive the kernel of the
meson–baryon scattering amplitude order by order in chiral
perturbation theory (ChPT). At lowest order, one has to take
into account the Weinberg-Tomozawa (WT) contact term as
well as the Born and crossed-Born term contributions. Often
considered as the most important piece of the LO kernel, the
WT term has been mostly employed in the initial studies of
meson–baryon scattering, see e.g. Ref. [5]. This approxima-
tion should, however, not be performed any more. First, one
cannot expect that this is suitable for all the meson–baryon
scattering channels, because the WT term does not contribute
to e.g. the K− p → K+�−, K 0�0 reactions. Second, and
most importantly, such an approach violates the counting
rules of the underlying effective field theory, which states that
one has to include all terms at a given order, not just pick-
ing the presumably dominant one(s). Thus, beyond the WT
term, the Born and crossed-Born terms in the lowest order
and the higher order contributions are necessary to improve
the description of the rich information available for meson–
baryon scattering.
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Along this line, in Ref. [8], the scattering amplitudes up to
next-to-next-to-leading order (NNLO) in the heavy baryon
(HB) ChPT [14,15] have been employed in the chiral uni-
tary approach. The obtained results turned out to provide
a reasonably good description of the scattering data up to
around 1.3 GeV, including the region of the �(1232) reso-
nance in the P33 partial wave. A further step in this direc-
tion was the Bethe–Salpeter approach in Ref. [16] (see also
Ref. [17]) used to investigate pion-nucleon scattering in the
S11 partial wave, showing that both the N∗(1535) and the
N∗(1650) can be dynamically generated. Also, it should be
pointed out that state-of-the-art investigations of the �(1405)

employ kernels at least to NLO accuracy, see e.g. Ref. [18]
for a comparison of different approaches and Ref. [19] for a
recent study including also P-waves. Extending these results
beyond NLO accuracy can indeed lead to distortions of the
analytic structure, as exemplified in Ref. [20].

In recent years, covariant ChPT with the extended-on-
mass-shell (EOMS) scheme [21–23] was utilized because
of the somewhat faster convergence than HB scheme in
the one-baryon sector [24–27]. Hence, in the chiral uni-
tary approach, one might also want to use the relativistic
meson–baryon interaction from covariant ChPT. Thus, the
relativistic integral equation, e.g. the Bethe–Salpeter equa-
tion (T = V + VGT ), has to be employed to obtain the
unitarized amplitude in such a Lorentz-invariant framework.
This is, in general, a technically very demanding task. In prac-
tice, the approximation of on-shell factorization, which takes
V and T on shell to factor out the four-dimensional integral,
is often used to solve the Bethe–Salpeter equation [5,28].

Due to the resummation of the interaction kernel in
the unitarization procedure, not all the ultraviolet diver-
gent terms of the meson–baryon scattering amplitude can
be absorbed in the low-energy constants (LECs) of the effec-
tive Lagrangians. Therefore, in chiral unitary approaches, the
amplitudes depend on the cutoff parameter (�) or the sub-
traction constant(s) [11,29,30]. To obtain an explicitly renor-
malizable approach we apply the rules of time-ordered per-
turbation theory (TOPT) [31] to the effective Lagrangian of
mesons, baryons and vector mesons as dynamical degrees of
freedom. The inclusion of vector mesons leads to a softer UV-
behaviour as will be discussed below. We define the effective
meson–baryon potential as the sum of the two-particle irre-
ducible TOPT diagrams contributing to the meson–baryon
scattering amplitudes. The scattering amplitudes are obtained
by solving the corresponding integral equations. The advan-
tage of this formulation as compared to the alternative
approaches mentioned above is that the leading-order scat-
tering amplitude is renormalizable. This guarantees that all
divergences can be removed by renormalizing the coupling
constants available at a given order, provided that the higher-
order corrections to the effective potential are taken into
account perturbatively. To demonstrate how this formalism

can be applied to a meson–baryon scattering problem, we
apply it to elastic pion-nucleon (πN ) scattering, where we
use the parameterization of fields specified in Ref. [32] (this
parametrization is only suitable for the two-flavor case).

Our paper is organized as follows: In Sect. 2 we spec-
ify the effective Lagrangian for meson–baryon scattering in
the three-flavor case. An integral equation for the meson–
baryon scattering amplitude using TOPT is derived in Sect. 3.
In Sect. 4, we discuss the application of the developed for-
malism to the LO pion-nucleon scattering amplitude and the
results of our work are summarized in Sect. 5. Some techni-
calities are relegated to the appendices.

2 Effective Lagrangian

We start with the effective Lagrangian of the interacting
SU(3) octet fields of pseudoscalar mesons P , baryons B,
and the vector mesons Vμ in the vector field representation
of Ref. [33] (corresonding to model II of Ref. [34]) invariant
under the symmetries of QCD, in particular the non-linearly
realized spontaneously broken chiral symmetry. We include
vector mesons as explicit degrees of freedom because this
improves the ultraviolet behaviour of meson–baryon inte-
gral equations without altering the low-energy scattering
amplitudes. However, care has to be taken to avoid double
counting, exemplified for the WT term in different effective
Lagrangians in Ref. [33].

Our lowest-order Lagrangian is given by

L0 = F2
0

4
Tr

{
uμu

μ + χ+
} + Tr

{
B̄

(
iγμD

μ − m
)

B
}

−1

4
Tr

(
VμνV

μν − 2M2
V VμV

μ
)

+D/F

2
Tr

{
B̄γμγ5[uμ, B]±

}

+ (GD/GF ) Tr
{
B̄γμ[Vμ, B]±

}
, (1)

where

Vμν = DμVν − DνVμ, DμX = ∂μX + [
μ, X],

μ = 1

2

(
u†∂μu + u∂μu

†
)

,

uμ = iu†∂μUu†, u2 = U = exp
(√

2i P/F0

)
,

χ± = u†χu† ± uχ†u, χ = 2B0M . (2)

Here, F0 is the pion decay constant in the three-flavor chiral
limit, while D, F , GD and GF are coupling constants, M
denotes the quark mass matrix and B0 is related to the scalar
quark condensate. The SU(3) matrix U is parametrized in
terms of the pseudoscalar meson octet.

We take into account the results of Ref. [35] obtained
from the analysis of constraints imposed on the interactions
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of vector meson fields leading to GD = 0 and GF = g,
with g the coupling of the vector-field self-interactions, cor-
responding to a massive Yang-Mills theory [36,37]. Analo-
gously to Ref. [34], we introduce new vector fields by sub-
stituting Vμ = V̄μ − (i/g)
μ and obtain, modulo terms of
higher order in the chiral expansion and/or with more than
two vector fields, the following Lagrangian

L0 = F2
0

4
Tr

{
uμu

μ + χ+
} + Tr

{
B̄

(
iγμ∂μ − m

)
B

}

−1

4
Tr

(
V̄μν V̄

μν − 2M2
V

(
V̄μ − i

g

μ

)(
V̄μ − i

g

μ

))

+D/F

2
Tr

{
B̄γμγ5[uμ, B]±

} + g Tr
{
B̄γμ[V̄μ, B]} , (3)

where V̄μν = ∂μV̄ν − ∂ν V̄μ − ig[V̄μ, V̄ν]. Notice that the
covariant derivatives have been replaced by ordinary ones
in Eq. (3), similar to the two-flavor parameterization of Ref.
[32]. To calculate the meson–baryon scattering amplitudes,
we apply the diagrammatic rules of TOPT [31] corresponding
to the effective Lagrangian of Eq. (3).

We should mention here that this approach still lacks some
physics, namely the explicit inclusion of the �(1232) reso-
nance, see e.g. Ref. [10] (or, more generally, the inclusion
of the spin-3/2 decuplet). The �(1232) can not be generated
dynamically if one insists on a matching to chiral ampli-
tudes at low energies or in the unphysical region as done in
Refs. [38–40]. In particular, very large dimension-two and
dimension-three LECs incompatible with the above men-
tioned determinations were found to be necessary in order
to generate a resonance in the P33-wave using the IAM in
Ref. [8].

3 Integral equations for meson–baryon scattering

The meson–baryon scattering amplitude TMB is obtained
from the four-point vertex function 
̃4 by applying the stan-
dard LSZ formula

TMB = Z1/2
Bi

Z1/2
B f

Z1/2
Mi

Z1/2
M f

ū(p f ) 
̃4 u(pi )

≡ Z1/2
Bi

Z1/2
B f

Z1/2
Mi

Z1/2
M f

T̃ , (4)

where ZMi (ZM f ) and ZBi (ZB f ) are the residues of the
propagators corresponding to the initial (final) meson and
baryon, respectively and u, ū are Dirac spinors correspond-
ing to the incoming and outgoing baryons, in order. The on-
shell amplitude T̃ is given as a sum of an infinite number of
TOPT diagrams. Notice that it does not include diagrams with
corrections on the external legs. Let us discuss this in more
detail. It is convenient to define the effective meson–baryon
potential as a sum of all possible meson–baryon irreducible
TOPT diagrams. The amplitude T̃ is then given by an infinite
series

T̃ = Ṽ + V̄ G V̄ + V̄ G VG V̄ + V̄ G VG VG V̄ + · · ·
= Ṽ + V̄ G V̄ + V̄ G [V + VG V + · · · ]G V̄

= Ṽ + V̄ G V̄ + V̄ G TG V̄ , (5)

where G is the meson–baryon Green function and T̃ , T , Ṽ ,
V̄ and V are the on-shell amplitude, the off-shell amplitude,
the on-shell potential, the half-off-shell potential and the off-
shell potential, respectively. The on-shell potential Ṽ does
not include diagrams with corrections on the external legs.
The half-off-shell potential V̄ does not include diagrams with
corrections on the external legs with on-shell momenta while
the off-shell potential V also includes diagrams with correc-
tions on the external legs. The off-shell amplitude T satisfies
the following equation:

T = V + VG T . (6)

To cover all processes with different strangeness, Eq. (6) has
to be understood as a matrix equation, i.e. one has to deal
with coupled channels.

The meson–baryon scattering amplitude can be conve-
niently calculated in the center-of-mass system (CMS). We
denote the relative three-momenta of the incoming and out-
going particles in the CMS by �p and �p ′, respectively. In the
partial wave basis, Eq. (6) leads to the following coupled
equations with the potentials V M f B f ,Mi Bi

( �p ′, �p),

T M f B f ,Mi Bi
(
E; �p ′, �p)

= V M f B f ,Mi Bi
(
E; �p ′, �p)

+
∑

M,B

∫
d3�k

(2π)3 V
M f B f ,MB(E; �p ′, �k)

×GMB(E) T MB,Mi Bi (E; �k, �p), (7)

where Mi Bi , M f B f and MB denote initial, final and inter-
mediate particle channels. Further, the two-body Green func-
tions read

GMB(E) = 1

2 ωMωB

−mB

E − ωM − ωB + iε
, (8)

where mI and ωI ≡ ωI (q,mI ) := (�q 2 + m2
I

)1/2
are the

mass and energy of the I th hadron.
To calculate the meson–baryon scattering amplitudes, we

apply the standard power counting to the effective potential
for its expansion in powers of a small parameter and solve
the leading order equation for the amplitude

T0 = V0 + V0 G T0. (9)

Higher order corrections to the effective potential can be
taken into account perturbatively, or alternatively, subtrac-
tive renormalization, analogous to the one outlined in Ref.
[41], can be applied. For the next-to-leading order correction
T1 we have

T1 = V1 + T0 G V1 + V1 G T0 + T0 G V1 G T0, (10)
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and higher order corrections can be obtained analogously. In
practice, we will solve the half-on-shell equation and then
put the solution fully on-shell.

In the next section we apply this formalism to πN scat-
tering as an example. Applications in SU(3) BChPT will be
considered in forthcoming publications.

4 Application to pion-nucleon scattering

In the limit of exact isospin symmetry, the on-shell amplitude
of the elastic πN scattering reaction πa(q1) + N (p1) →
πb(q2)+ N (p2), with Cartesian isospin indices a and b, can
be parameterized as

T ba
πN (s, t, u) = χ

†
N ′

{
δbaT

+(s, t, u)

+1

2
[τb, τa]T−(s, t, u)

}
χN , (11)

where the τi are the Pauli matrices and χN , χN ′ denote
nucleon iso-spinors. The conventional Mandelstam variables
are defined as s = (p1 + q1)

2, t = (p1 − p2)
2, u =

(p1−q2)
2, subject to the constraint s+t+u = 2(m2

N +M2
π ).

The Lorentz decomposition of the invariant amplitudes
T± reads (we use here the D-B representation instead of the
more common A-B one, see e.g. [42]),

T±(s, t, u) = ū(λ′)(p2)

{
D±(s, t, u)

− 1

4mN
[/q2, /q1]B±(s, t, u)

}
u(λ)(p1), (12)

with the superscripts λ′, λ denoting the spins of the Dirac
spinors ū, u, respectively.

We use Dirac spinors u(p) with four-momentum p:

u(p) =
(

ω(p,m) + m

2m

)1/2
(

χ
�σ · �p χ

ω(p,m)+m

)

, (13)

where m is the mass of the corresponding baryon and χ a
two-component spinor, and decompose

u(p) = u0 + [u(p) − u0] ≡ u0 + uho. (14)

Here u0 = (χ 0)T is the leading order contribution and uho

stands for the higher order part. The leading order contribu-
tion satisfies

u0 = P+ u0 := 1 + v/

2
u0, (15)

with v = (1, 0, 0, 0) in the rest-frame of the particle. For the
reduced amplitude we use the following parameterization
[43]

T ba
πN = δba

[
g+ + i �σ · (�q2 × �q1)h

+]

+i εbacτ c
[
g− + i �σ · (�q2 × �q1)h

−]
. (16)

The partial wave projection of the isospin amplitudes is
given by

f ±
�±(s) = mN

8π
√
s

∫ +1

−1
dz

×
[
g± P�(z)+q(s)2h± (P�±1(z)−zP�(z))

]
, z ≡ cos θ,

(17)

where θ is the scatting angle in the CMS frame, the P�(z) are
the Legendre polynomials and q(s)2 = ((s −m2

N − M2
π )2 −

4m2
N M

2
π )/(4 s). A commonly used parametrization of the

partial wave amplitudes is

f I�±(s) = 1

2iq(s)

{
e2iδ I�±(s) − 1

}
. (18)

Here, the phase shifts δ I�±(s) are real-valued functions.

4.1 LO pion-nucleon potential

We take the effective Lagrangian of pions, nucleons and the
ρ-meson contributing to the LO πN potential in the form
given by Weinberg in Ref. [32], where we also use the uni-
versality of the ρ-meson coupling [44]:

L = 1

2
∂μπa∂μπa − M2

2
πaπa

+�̄

(
iγμ∂μ − m + g

2
γ μτ a ρa

μ + 1

2
◦
gA γμγ5u

μ

)
�,

−1

4
Fa

μνF
aμν + M2

ρ

2
ρa

μρaμ + g εabcπa∂μπbρcμ.

(19)

Here, πa and ρa
μ are iso-triplets of the pion and ρ-meson

fields with masses M and Mρ , respectively, and M2
ρ =

2g2F2
π (KSFR relation).1 Further, Fa

μν = ∂μρa
ν − ∂νρ

a
μ +

g εabcρb
μρc

ν , � is the doublet of the nucleon fields, m and
◦
gA are the chiral limit values of the nucleon mass and the
axial-vector coupling constant, respectively. Notice that by
integrating out the vector mesons from EFT defined by the
Lagrangian of Eq. (19), one generates the standard chiral
effective Lagrangian of pions and nucleons alone, includ-
ing the Weinberg-Tomozawa term. As mentioned above, we
prefer to work with dynamical vector mesons because the
vector meson exchange diagram, which at low energies is
equivalent to Weinberg-Tomozawa term, has a better ultra-
violet behaviour.

The LO πN potential is given by time-ordered diagrams
shown in Fig. 1. Notice that while we include the vector
mesons as explicit degrees of freedom, for pion-nucleon scat-
tering for small Mandelstam t all four components of the

1 Here, we identify the LO pion decay constant F0, see Eq. (1), with
the physical pion decay constant Fπ .
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(a) (b) (c) (d)

Fig. 1 Time-ordered diagrams contributing to the LO meson–baryon potential. The solid, wiggled and dashed lines correspond to baryons, vector
mesons and pseudoscalar mesons, respectively

momenta qμ carried by vector meson lines are small com-
pared to their masses.2 Therefore, in the propagator of the
vector meson ∼ gμν − qμqν/M2

ρ , the contribution of the
second term is suppressed compared to the first one. Thus,
we include only the first term in the leading order poten-
tial by treating the second term as a higher order correction.
This issue is discussed in more detail in Appendix A. In
TOPT, this leads to the standard rules (i.e. similar to the ones
for scalar particles) for intermediate states containing vector
meson lines. Let us emphasize that this is completely differ-
ent from processes involving external vector mesons, where
such an approximation is not justified [45,46].

By taking into account the projectors P+ which reduce
the expressions corresponding to the diagrams of Fig. 1 to
the LO contributions to the effective potential, we have (to
obtain the amplitude/potential, one factor of i is dropped in
the expressions of the diagrams):

V ba
πN = δba

[
g+
V + i �σ · (�q2 × �q1)h

+
V

] + i εbacτ c

× [
g−
V + i �σ · (�q2 × �q1)h

−
V

]
, (20)

with

g±
V = g±

Va
+ g±

Vb
+ g±

Vc+d
, h±

V = h±
Va

+ h±
Vb

+ h±
Vc+d

, (21)

g±
Va

= �q1 · �q2 h
±
Va

= g2
AmN

4F2
π

�q1 · �q2

ω (p1 + q1,mN ) (ω (p1 + q1,mN ) − E − i ε)
,

g+
Vb

= −g−
Vb

= −�q1 · �q2 h
+
Vb

= �q1 · �q2 h
−
Vb

= g2
AmN

4F2
π

�q1 · �q2

ω (p1 − q2,mN ) (ω (p1 − q2,mN ) + ω(q1, Mπ ) + ω(q2, Mπ ) − E − i ε)
,

g+
Vc+d

= h±
Vc+d

= 0,

g−
Vc+d

= M2
ρ (ω(q1, Mπ ) + ω(q2, Mπ ))

8F2
π ω(q1 − q2, Mρ)

×
(

1

ω (p2,mN ) + ω
(
q1 − q2, Mρ

) + ω (q1, Mπ ) − E − i ε

+ 1

ω (p1,mN ) + ω
(
q1 − q2, Mρ

) + ω (q2, Mπ ) − E − i ε

)

. (22)

2 This also applies to loop momenta, because after renormalization they
are effectively cut off at small scales.

The actual calculations described below are performed in
the CMS with �p1 = −�q1 = �p and �p2 = −�q2 = �p ′.

4.2 Renormalization

We work in the partial wave basis and write the leading order
potential as the sum of the one-nucleon reducible and irre-
ducible parts,

V0 = VR + VI , (23)

where VR = Va and VI = Vb + Vc+d . For the above poten-
tial it is possible to write the solution to the LO equation in
a form (analogously to Ref. [47]), that allows one to carry
out a subtractive renormalization. To that end, we write the
solution to the LO equation as [48]

T0 = TI + (1 + TI G) TR(1 + G TI ). (24)

Here and in what follows, we use a symbolic notation and do
not explicitly write the momentum integrations. The ampli-
tudes TI and TR satisfy the equations
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TI = VI + VI G TI , (25)

and

TR = VR + VR G (1 + TIG) TR . (26)

Notice that while the amplitude TI is finite in the removed
regulator limit, it gets large finite contributions. For example,
the one-loop diagram with the iterated rho-meson-exchange
potential contains pieces which violate the chiral power
counting. Such large power-counting-breaking contributions
can (and must) be systematically removed by additional finite
subtractions. We choose the subtraction scheme such that our
iterated amplitude matches the perturbative one obtained in
chiral EFT with the EOMS renormalization scheme [23]. To
implement such subtractions, we apply a subtractive renor-
malization scheme analogous to the one of Ref. [41], adjusted
to the pion-nucleon system. In particular, working in the
CMS, we replace the pion-nucleon propagator G(E) with
the subtracted propagator GS(E) = G(E)−G(mN ). As dis-
cussed in Ref. [41], this corresponds to taking into account
contributions of an infinite number of pion-nucleon countert-
erms. Notice that such extra subtractions have no influence
on the dynamical generation of resonances or bound states,
see Appendix B for details. Thus, instead of Eq. (24), we
have

T S
0 = T S

I +
(

1 + T S
I GS

)
TR

(
1 + GS T

S
I

)
, (27)

where the subtracted amplitude T S
I satisfies the equation

T S
I = VI + VI GS T

S
I . (28)

The reducible potential VR can, in the partial wave basis, be
written as

VR(E, p′, p) = ξ T (p′) C(E)ξ(p) , (29)

where ξ T (q) := (1, q) with q ≡ |�q | and the 2 × 2 matrix
C(E) is obtained from the partial wave reduction of Eq. (22).
Then, the amplitude TR is also given in a separable form

TR(E, p′, p) = ξ T (p′)X (E)ξ(p), (30)

with

X (E) =
[
C−1 − ξ GR ξ T − ξ GR T S

I GR ξ T
]−1

. (31)

Thus the final expression for the amplitude T has the form

T S
0 = T S

I + (ξ T + T S
I GR ξ T )X (ξ + ξ GR T S

I ) . (32)

In a close analogy to Ref. [48], we apply subtractive renor-
malization, i.e. all divergences in all loop diagrams are sub-
tracted and the coupling constants are substituted by their
renormalized, finite values. For the amplitude of Eq. (32)
this amounts to the procedure outlined below. A straight-
forward ultraviolet power counting demonstrates that the
amplitude T S

I as well as �T (q ′) ≡ ξ T + T S
I GS ξ T and

�(q) ≡ ξ + ξ GS T S
I are finite while X (E) is divergent.

Renormalization is carried out by performing subtractions
that correspond to taking into account counterterms gener-
ated by the renormalization of the nucleon mass and the pion-
nucleon coupling constant. That is, the dreesed nucleon prop-
agator is enforced to have a pole at the physical mass of the
nucleon mN , and the renormalized pion-nucleon coupling is
required to take its physical value gA.

Our results for the pion-nucleon phase shifts based on the
renormalized amplitude are shown in Fig. 2 in comparison
with the ones obtained from a perturbative tree-order calcu-
lation using the effective Lagrangiang with vector mesons
and the results from the Roy–Steiner equation analysis [49]
and the partial wave analysis of the George Washington Uni-
versity group (GWU) [50]. As expected for low-energies
in the non-strange sector, the results for the renormalized
resummed amplitudes are only slightly different from the
ones of the perturbative approach. Notice that the P33-wave
can not be described properly as long as the �(1232) is not
included as an explicit degree of freedom, as it was already
pointed out in Sect. 2. An extension to the delta-full case will
be reported in a separate publication.

5 Summary

In this paper we considered the meson–baryon scattering
problem starting with a manifestly Lorentz-invariant formu-
lation of BChPT and applying time-ordered perturbation the-
ory.

We defined the effective potential as a sum of two-particle
irreducible time ordered diagrams contributing to the meson–
baryon scattering amplitude. The full scattering amplitudes
can be obtained by solving the corresponding integral equa-
tions. By considering an effective field theory of pseudoscalar
and vector mesons and baryons, we obtained the integral
equation for LO scattering amplitudes which is renormaliz-
able. By treating higher-order terms in the effective potential
as perturbative corrections one can maintain renormalizabil-
ity also at higher orders.

The proposed approach for meson–baryon scattering in
terms of the integral equations can provide quantitative infor-
mation on the convergence of ChPT in the single-baryon sec-
tor [51–53]. ChPT provides a framework to perform pertur-
bative calculation of the scattering amplitude order by order.
It is, therefore, important to investigate the applicability of
the chiral expansion, especially in the SU(3) sector, where
the perturbative expansion parameter is mK /�χ ∼ 0.5, with
mK denoting the kaon mass and �χ the chiral symmetry
breaking scale. In the chiral unitary approach proposed in
this paper, iterations of the meson–baryon scattering ker-
nel within the integral equation result in the nonperturbative
resummation of a certain class of renormalized contributions
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Fig. 2 Pion-nucleon scattering phase shifts in standard partial-wave
notation. Blue (dashed) lines are the LO perturbative results (tree-order
result), red (solid) lines represent the results of the resummed LO poten-

tial, while the dots and circles correspond to the Roy–Steiner analysis
[49] and GWU [50] phase shifts, respectively

to the scattering amplitude which are of higher orders accord-
ing to the chiral power counting. Thus, by comparing the
non-perturbative amplitude with its perturbative expansion,
one can get insights into the energy region of the applica-
bility of the chiral expansion. Similarly, since the scattering
amplitude is a function of the light-quark masses, we can
also investigate the range of quark masses for which the chi-
ral extrapolation of the lattice QCD data for meson–baryon
scattering, see e.g. Refs. [54–59], can be trusted.

As a first but still somewhat simplistic application we
considered here the pion-nucleon scattering amplitude and
compared the phase shifts obtained by solving the leading
order integral equation to those of chiral EFT. While the
LO amplitude is finite in the removed cutoff limit, it gets
large contributions that violate the chiral power counting in
the low-energy region and therefore requires finite subtrac-
tions. After performing additional finite renormalization, the
resummation of an infinite number of higher order contribu-
tions is found to yield small corrections to the phase shifts at
low energies. We note again that this approach is not appli-
cable to all partial waves since we have not included the
�(1232) as an explicit degree of freedom. This can be done
straightforwardly as it merely amounts to the corresponding
extension of the effective Lagrangian with no need to modify
the approach to calculate the scattering amplitudes described
in this work.

In view of the existing data on and the upcoming exper-
iments of strangeness production, applying our renormaliz-

able framework to study the meson–baryon scattering in the
SU(3) sector will help to further understand the dynamics
of hadrons with strangeness. In particular, antikaon-proton
scattering plays an important role in the study of the two-
pole nature of the �(1405) [11,13,18] and the properties
of dense nuclear matter, see [60] for a recent review. Along
this lines, we will carry out the leading- and next-to-leading
order studies of the meson–baryon scattering amplitudes in
the strangeness S = −1 sector.
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Appendix A: More on the iterated ρ-meson propagator

Here, we discuss in more detail the contribution from the
longitudinal part of the ρ-meson propagator. If we write the
propagator of the ρ-meson as

− i
gμν − ξ

pμ pν

M2
ρ

p2 − M2
ρ

, (A1)

then the ξ -dependent part of the iteration of the ρ-exchange
diagram, i.e. one-loop Lorentz-invariant box diagram, has
the form

g4ξ(γ · q1 + γ · q2)
((

3tξ − 12M2
ρ(ξ − 6)

)
B0

(
t, Mρ

2, Mρ
2
) − 6ξ A0

(
Mρ

2
) + 2ξ

(
t − 6Mρ

2
))

18Mρ
4 , (A2)

where the loop integrals are defined as

A0(m
2) = (2πμ)4−n

iπ2

∫
dnk

k2 − m2 ,

B0(q
2, M2

ρ, M2
ρ)(s) = (2πμ)4−n

iπ2

×
∫

dnk

[k2 − M2
ρ][(k + q)2 − M2

ρ] . (A3)

As it is clearly seen from the above expression, in the one-
loop contribution to the scattering amplitude, generated by
the ξ -dependent terms, the pion and nucleon denominators
are cancelled and the obtained result is polynomial in t for
t 
 M2

ρ and therefore can be included in the renormalization
of the contact interactions. Consequently, the ξ -dependent
term can be included in the higher order terms even when we
iterate the ρ-meson exchange diagram.

Appendix B: On the generation of bound states or reso-
nances

Here, we want to discuss the issue of resonance generation in
the presence of possible subtractions in the integral equation.
Let us consider a simple example. Suppose the potential is
just a constant C , then the amplitude depends only on the
energy and the integral equation can be written as

T (E) = C +
∫

d3k C G(E, k)T (E) . (B1)

The solution of this equation is

T (E) = 1

1/C − ∫
d3k G(E, k)

. (B2)

A resonance or bound state can be found by solving the equa-
tion

1/C −
∫

d3k G(E, k) = 0 . (B3)

The integral which appears here is, however, divergent. We
remove the divergence by renormalizing C

T (E) = 1
[
1/C − ∫

d3k G(Eμ, k)
] − ∫

d3k
[
G(E, k) − G(Eμ, k)

]

≡ 1

1/CR(μ) − ∫
d3k

[
G(E, k) − G(Eμ, k)

] , (B4)

where we subtract at E = Eμ, with Eμ the renormaliza-
tion scale, a convenient choice of which would be e.g. Eμ =
Ethreshold − μ for some non-negative μ of the order of the

small scale in the problem. Obviously, such an identical trans-
formation does not change the position of the pole of the
amplitude. i.e. the resonance or bound state.

On the other hand, it is exactly equivalent to solving a
subtracted integral equation,

T (E) = CR +
∫

d3k CR
[
G(E, k) − G(Eμ, k)

]
T (E) ,

(B5)

which also takes into account contributions of an infinite
number of counterterms, which are responsible for the sub-
tractions in each iteration of the equation.
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