000889253 001__ 889253 000889253 005__ 20240610120702.0 000889253 0247_ $$2doi$$a10.1088/1572-9494/ab8a24 000889253 0247_ $$2ISSN$$a0253-6102 000889253 0247_ $$2ISSN$$a1572-9494 000889253 0247_ $$2Handle$$a2128/26726 000889253 0247_ $$2altmetric$$aaltmetric:77423960 000889253 0247_ $$2WOS$$aWOS:000541446400001 000889253 037__ $$aFZJ-2021-00158 000889253 082__ $$a530 000889253 1001_ $$0P:(DE-HGF)0$$aSevert, Daniel$$b0 000889253 245__ $$aThe Roper resonance in a finite volume 000889253 260__ $$aBeijing$$bInst. of Theoretical Physics$$c2020 000889253 3367_ $$2DRIVER$$aarticle 000889253 3367_ $$2DataCite$$aOutput Types/Journal article 000889253 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1610459486_25886 000889253 3367_ $$2BibTeX$$aARTICLE 000889253 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000889253 3367_ $$00$$2EndNote$$aJournal Article 000889253 520__ $$aWe calculate the energy levels corresponding to the Roper resonance based on a two-flavor chiral effective Lagrangian for pions, nucleons, deltas, and the Roper resonance at the leading one-loop order. We show that the Roper mass can be extracted from these levels for lattice volumes of moderate size. 000889253 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0 000889253 536__ $$0G:(GEPRIS)196253076$$aDFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076)$$c196253076$$x1 000889253 588__ $$aDataset connected to CrossRef 000889253 7001_ $$0P:(DE-Juel1)131252$$aMeißner, Ulf-G$$b1$$eCorresponding author 000889253 773__ $$0PERI:(DE-600)2021522-8$$a10.1088/1572-9494/ab8a24$$gVol. 72, no. 7, p. 075201 -$$n7$$p075201 -$$tCommunications in theoretical physics$$v72$$x1572-9494$$y2020 000889253 8564_ $$uhttps://juser.fz-juelich.de/record/889253/files/Severt_2020_Commun._Theor._Phys._72_075201.pdf$$yRestricted 000889253 8564_ $$uhttps://juser.fz-juelich.de/record/889253/files/2003.05745.pdf$$yPublished on 2020-06-04. Available in OpenAccess from 2021-06-04. 000889253 909CO $$ooai:juser.fz-juelich.de:889253$$popenaire$$pdnbdelivery$$pdriver$$pVDB$$popen_access 000889253 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131252$$aForschungszentrum Jülich$$b1$$kFZJ 000889253 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000889253 9141_ $$y2020 000889253 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-29 000889253 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-29 000889253 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess 000889253 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-29 000889253 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-29 000889253 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-29 000889253 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMMUN THEOR PHYS : 2018$$d2020-08-29 000889253 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-29 000889253 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-29 000889253 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-29$$wger 000889253 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-29 000889253 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x0 000889253 9201_ $$0I:(DE-Juel1)IKP-3-20111104$$kIKP-3$$lTheorie der starken Wechselwirkung$$x1 000889253 9801_ $$aFullTexts 000889253 980__ $$ajournal 000889253 980__ $$aVDB 000889253 980__ $$aUNRESTRICTED 000889253 980__ $$aI:(DE-Juel1)IAS-4-20090406 000889253 980__ $$aI:(DE-Juel1)IKP-3-20111104 000889253 981__ $$aI:(DE-Juel1)IAS-4-20090406