000889254 001__ 889254 000889254 005__ 20240610120740.0 000889254 0247_ $$2doi$$a10.1007/JHEP05(2020)001 000889254 0247_ $$2ISSN$$a1029-8479 000889254 0247_ $$2ISSN$$a1126-6708 000889254 0247_ $$2ISSN$$a1127-2236 000889254 0247_ $$2Handle$$a2128/26727 000889254 0247_ $$2altmetric$$aaltmetric:77017134 000889254 0247_ $$2WOS$$aWOS:000532132800001 000889254 037__ $$aFZJ-2021-00159 000889254 082__ $$a530 000889254 1001_ $$0P:(DE-HGF)0$$aLu, Zhen-Yan$$b0$$eCorresponding author 000889254 245__ $$aQCD θ-vacuum energy and axion properties 000889254 260__ $$a[Trieste]$$bSISSA$$c2020 000889254 3367_ $$2DRIVER$$aarticle 000889254 3367_ $$2DataCite$$aOutput Types/Journal article 000889254 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1610459911_26622 000889254 3367_ $$2BibTeX$$aARTICLE 000889254 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000889254 3367_ $$00$$2EndNote$$aJournal Article 000889254 520__ $$aAt low energies, the strong interaction is governed by the Goldstone bosons associated with the spontaneous chiral symmetry breaking, which can be systematically described by chiral perturbation theory. In this paper, we apply this theory to study the θ-vacuum energy density and hence the QCD axion potential up to next-to-leading order with N non-degenerate quark masses. By setting N = 3, we then derive the axion mass, self-coupling, topological susceptibility and the normalized fourth cumulant both analytically and numerically, taking the strong isospin breaking effects into account. In addition, the model-independent part of the axion-photon coupling, which is important for axion search experiments, is also extracted from the chiral Lagrangian supplemented with the anomalous terms up to O(p6). 000889254 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0 000889254 536__ $$0G:(GEPRIS)196253076$$aDFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076)$$c196253076$$x1 000889254 588__ $$aDataset connected to CrossRef 000889254 7001_ $$0P:(DE-HGF)0$$aDu, Meng-Lin$$b1 000889254 7001_ $$00000-0002-2919-2064$$aGuo, Feng-Kun$$b2 000889254 7001_ $$0P:(DE-Juel1)131252$$aMeißner, Ulf-G.$$b3 000889254 7001_ $$0P:(DE-HGF)0$$aVonk, Thomas$$b4 000889254 773__ $$0PERI:(DE-600)2027350-2$$a10.1007/JHEP05(2020)001$$gVol. 2020, no. 5, p. 1$$n5$$p1$$tJournal of high energy physics$$v2020$$x1029-8479$$y2020 000889254 8564_ $$uhttps://juser.fz-juelich.de/record/889254/files/2003.01625.pdf$$yOpenAccess 000889254 8564_ $$uhttps://juser.fz-juelich.de/record/889254/files/Lu2020_Article_QCD%CE%98-vacuumEnergyAndAxionPrope.pdf$$yOpenAccess 000889254 909CO $$ooai:juser.fz-juelich.de:889254$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000889254 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131252$$aForschungszentrum Jülich$$b3$$kFZJ 000889254 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000889254 9141_ $$y2020 000889254 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-02 000889254 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2020-09-02 000889254 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-02 000889254 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ HIGH ENERGY PHYS : 2018$$d2020-09-02 000889254 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-02 000889254 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-02 000889254 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-02 000889254 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-02 000889254 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-02 000889254 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-02 000889254 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000889254 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-09-02 000889254 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-02 000889254 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-02 000889254 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ HIGH ENERGY PHYS : 2018$$d2020-09-02 000889254 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-02$$wger 000889254 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2020-09-02 000889254 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3 000889254 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x0 000889254 9201_ $$0I:(DE-Juel1)IKP-3-20111104$$kIKP-3$$lTheorie der starken Wechselwirkung$$x1 000889254 9801_ $$aFullTexts 000889254 980__ $$ajournal 000889254 980__ $$aVDB 000889254 980__ $$aUNRESTRICTED 000889254 980__ $$aI:(DE-Juel1)IAS-4-20090406 000889254 980__ $$aI:(DE-Juel1)IKP-3-20111104 000889254 981__ $$aI:(DE-Juel1)IAS-4-20090406