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Abstract

The study of neuronal activity patterns is one of the high-interest topics in neurosci-
entific research (Abeles (2010)). It is hypothesized that highly interconnected groups
of neurons, so-called cell assemblies, can be building blocks for information processing
(Hebb (1949); Abeles (1991); Harris (2005)). One of the effects of these cell assemblies’
activation would be the formation of precisely timed arrangements of spikes emitted by
the neurons participating in an assembly (Bienenstock (1995); Izhikevich (2006)). Ex-
perimental evidence for millisecond precise spiking activity is available for synchrony
patterns (Riehle et al. (1997); Kilavik et al. (2009); Torre et al. (2016)) and for patterns
with temporal delays (Prut et al. (1998); Villa and Abeles (1990); Russo and Durstewitz
(2017)).

One of the algorithms developed in recent years to verify this hypothesis is called
SPADE (Torre et al. (2013, 2016); Quaglio et al. (2017); Quaglio (2019); Stella et al.
(2019)), which stands for Spike PAttern Detection and Evaluation. This method com-
pares electrophysiological data against a null hypothesis. Due to the complexity of the
spiking recordings, this null hypothesis is not determined analytically but obtained by a
Monte Carlo approach, i.e., by opportunely generated surrogates (Torre et al. (2013)).

This thesis aims to compare different surrogate methods, specifically regarding their
application to form a statistically robust null hypothesis. Thereby, we refer to a sub-
category of surrogate approaches called dithering methods (Louis et al. (2010b)), whose
particular feature is that each spike is displaced individually within a small window.

We proceed in such a way that first, we summarize the necessary neuroscientific
background in chapter 1. After a brief explanation of the composition of neurons, we
will introduce action potentials, or spikes, that serve to propagate information. We
contrast the two standard hypotheses for neural coding and provide the reasons behind
the expectation to find spatio-temporal patterns.

The second chapter gives an overview of the theory of statistical point processes
used to model spike trains, i.e., sequences of spike times. We introduce the common
statistical measures used to describe electrophysiological recordings. In particular, we
focus on renewal and Markov processes, which allow simple modeling of stationary and
non-stationary spike trains. Throughout the thesis, we consider mainly the Poisson
processes with refractoriness (PPR), an adaptation of the Poisson processes, and the
Gamma processes. In detail, we discuss their statistical properties. Furthermore, we
present a typical form of discretization of time (used in SPADE) and point out the
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significant implications of this approach.
We describe in the third chapter the particular complexity of spike trains obtained

in electrophysiological recordings. As an example, we refer to the reach-to-grasp data
set (Brochier et al. (2018)), which was already used for analyses with earlier versions of
SPADE (Torre et al. (2016)).

SPADE is presented explicitly in the fourth chapter. We do not only provide an
overview of the entire workflow and how spatio-temporal patterns are defined, but also
explain in detail how the patterns are mined and statistically evaluated.

Chapter 5 presents the three dithering methods and compares them against one an-
other. We contrast the standard approach of uniform dithering with a newly introduced
adaptation, which takes refractoriness into account, and with the joint-ISI dithering. For
uniform dithering, we analytically examine the generated surrogate spike trains in terms
of their statistical properties. The same statistical properties are determined numeri-
cally for the other two methods, enabling us to compare the performance of the three
methods.

In the last chapter, we develop a test case that allows a final assessment of the
performances of the presented surrogate methods within SPADE, by evaluating them in
terms of false positives and false negatives. We can compare the results obtained by the
surrogate methods against a ground truth since we generate spike trains by employing
the processes presented in the second chapter. Therefore, we discuss the reasons for
the occurrences of false positives and false negatives. Consequently, depending on the
firing rate, we recommend which dithering method to use for statistically robust pattern
detection.

In conclusion, we summarize the results of this thesis and place them in the broader
context of other surrogate methods, including non-dithering methods. Finally, we ad-
dress the research questions raised by this thesis, and we give an outlook concerning
upcoming studies.
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Chapter 1

Neuroscientific Background

In this chapter, we briefly describe the processes behind the spiking activity of neu-
rons. We pay special attention to why sequences of spikes are modeled using statistical
point processes. Besides, we explain what spatio-temporal spiking patterns are and why
hypotheses predict them.

It is not in the scope of this thesis to explain these topics in depth. In this respect,
readers should refer to the cited neuroscience literature for more details.

1.1 Neurons and spikes

The mammalian brain consists mainly of two types of cells: neurons and glial cells. In
the following, the focus will be limited to the consideration of neurons, since they are the
principal cells responsible for sending electrical (and chemical) signals. The electrical
signals are called action potentials and are explained in more detail later in this chapter.

A neuron consists of the three parts soma, dendrites, and an axon (including the
axon terminals), as shown in figure 1.1. The soma is the cell body, which contains the
nucleus. The axon leaves the soma and branches out at a certain point. The ends of these
branches are called axon terminals, connected to dendrites of other cells via junctions
called synapses (Gerstner et al. (2014)). The axon, with its terminal, is the part of the
neuron responsible for propagating a signal from the soma to other neurons. Whereas,
dendrites are extensions of a neuron that transmit electrochemical signals from other
neurons to the soma. Thus, we can summarize the path of a neuron’s signal as

soma→ axon︸ ︷︷ ︸
presynaptic neuron

→ synapse→ dendrite→ soma︸ ︷︷ ︸
postsynaptic neuron

.

For simplicity, we use the term neuron to refer to the soma and the term synapse for
the entire path from one soma to another.

It is worth noting that there are different types of neurons. For our purpose, only the
distinction between excitatory and inhibitory neurons is relevant. The name says it all:
the signals from excitatory neurons have an amplifying effect on the membrane potential
of the postsynaptic neuron, and those from inhibitory neurons have a weakening effect.
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Figure 1.1: Schematic representation of
a neuron showing the soma (cell body),
the dendrites, and the axon with axon
terminals. Figure from Salman et al.
(2009). Figure 1.2: Temporal evolution of

membrane potential. Figure from Wiki-
media Commons (2020).

The brain has a complex anatomy. For mammals, an essential part of it is the cerebral
cortex, i.e., the outer (folded) layer of the neural tissue in the cerebrum. The cerebral
cortex can be divided into cortical areas, which are thought to be primarily responsible
for specific functions: e.g., the motor cortex for movement, the visual cortex for vision
(Kandel et al. (2015)).

In the cerebral cortex, neurons are interconnected via synapses in such a way that
they receive signals from and transmit signals to more than 10,000 neurons (Braitenberg
and Schüz (1991)). Typically, the membrane potential describes the state of a neuron
(Kandel et al. (2015)). The archetypal temporal dynamics of the membrane potential
we show in figure 1.2.

There, it is shown the temporal evolution of the generation of a neuronal signal,
by looking at the membrane potential of the neuron. The phenomenon starts with the
membrane potential being at its resting state, called resting potential, which is around
−70 mV. The membrane potential can increase due to electrical stimulation coming
from other neurons. An increase in the membrane potential can have two possible
consequences: it falls back to equilibrium, or it passes the firing threshold, which can
vary from neuron to neuron, but it is usually around −55 mV. In the latter case, the
neuron fastly depolarizes and then repolarizes. The depolarization and repolarization
together are called an action potential. This action potential, with a temporal duration
of 1 to 2 ms, is also called a spike. We say that the neuron fires. After the process of
repolarization, the membrane potential takes on values smaller than the resting potential.
The relaxation time back to the resting state is called the refractory period. We further
differentiate the refractory period into two parts. In the first part, the absolute refractory
period, no external input can elicit another action potential. While in the second part,
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the relative refractory period, any stimulation will have a reduced effect (Kandel et al.
(2015)).

In contrast to the figure 1.2, tthe membrane potential increases or decreases (de-
pending on the input of excitatory or inhibitory neurons) by various incoming spikes
whose combined effect can cause the membrane potential to exceed the threshold and
the neuron to fire.

It is widely agreed that the spike’s information lies only in its timing, neither in its
amplitude nor in its shape (Kass et al. (2014)). Therefore, we have a particular interest
in spike trains, sequences of spike times obtained from electrophysiological recordings.
The process of extracting the spike times and assigning them to different neuron units is
called spike sorting. This is still an error-prone process that is actively researched from
many sides (Rey et al. (2015)1) The methods, which we develop in this thesis, refer only
to already spike-sorted data2.

1.1.1 Spike trains

A spike train is defined as a sequence of ordered spike times s = (t1, . . . , tN ). In the
usual experimental design, the recordings comprise different trials. In each trial is the
spike train aligned to the presented external stimuli.

To measure the density of spikes over time, we define the firing rate as

λ(t) = lim
ε→∞

1

ε
Prob(spike in [t, t+ ε]) for t ≥ 0, ε > 0. (1.1)

With a finite number of trials, this quantity cannot be evaluated exactly, but different
estimation methods exist (Shinomoto (2010)). Other descriptive statistical properties we
introduce in the next chapter. In order to model spike trains, stochastic point processes
are used, which allow reproducing certain statistical observables.

Spike trains from simultaneous recordings of multiple neurons are called massively
parallel spike trains. The algorithm SPADE, that will be introduced in chapter 4, was
created to analyze this kind of experimental data. We denote k-th trial spike train of
the n-th neuron will as skn. In order to simplify the mathematical treatment, a spike
train is written as a function of time, in the following manner:

skn(t) =

Nk
n∑

i=1

δ(t− ti) with ti ∈ skn and Nk
n := #spikes in skn. (1.2)

1.2 Neural Coding and cell assembly theory

How the brain processes information is still a controversial question in the neuroscientific
community. There are two dominant ways to explain neural coding, i.e., the process of
how neurons encode information (Brette (2015)).

1There is also this recently finished master thesis in our institute: Sridhar (2020).
2In a certain way, one could estimate the impact of the errors due to spike sorting on the statistical

analysis carried out in this thesis in further research using the analyses of Pazienti and Grün (2006).
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The first one is called rate coding. In this framework, information is processed via
firing rate modulation. Several studies showed the correlation between the dynamics
of the firing rate and external stimuli or performed tasks (Georgopoulos et al. (1986);
Lamme et al. (1998); Roelfsema et al. (2004)) supporting this theory.

The second one is called temporal coding. The basic idea is that the spike occur-
rences’ precise timing plays an essential role in information processing. It was proposed
by Abeles (1982) that neurons are coincidence detectors, i.e., a neuron is more likely
to fire if it gets inputs synchronously from neurons connected by synapses than with
asynchronous input. Experimental evidence in several studies that neurons work as co-
incidence detectors (Roy and Alloway (2001); Perez-Orive et al. (2004); Bender et al.
(2006); Fino et al. (2010); Hong et al. (2012)) supports this hypothesis. The develop-
ment of SPADE goes in the direction of finding further evidence for the hypothesis of
temporal coding.

We introduce Hebbian Theory (Hebb (1949)) to illustrate why it is expected to
find evidence for temporal coding in higher-order correlations. This theory provides a
possible explanation for synaptic plasticity, i.e., the change in the weight of synapses over
time: when one neuron fires and then a second connected neuron fires, the connection
between these two neurons is strengthened. The strengthening of connections leads to
the formation of cell assemblies, groups of strongly connected neurons, which are then
able to reactivate in correspondence to a particular behavior.

Figure 1.3: Schematic representation of cell assemblies. Each triangle represents a neu-
ron and each arrow a synapse. In each subfigure, one cell assembly is active (orange
triangles). The synapses (blue arrows) propagate the spikes with different synaptic de-
lays. As time progresses, other synapses (green arrows) activate other assemblies on the
same space of neurons.
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Figure 1.4: Spatio-temporal patterns in a raster plot of spike trains. Figure adapted
from Quaglio et al. (2018).

1.2.1 Spatio-temporal Patterns

The presence of cell assemblies would mean that there are patterns of spiking activity
extended in space and time: spatio-temporal patterns (STPs)3. The temporal extension
of these patterns is expected due to the different synaptic delays. Nonetheless, before
analyzing spatio-temporal patterns, neuroscientific research was focused on the analysis
of unitary events (Grün et al. (2002a,b, 2010)), i.e., zero-lag correlations within a certain
temporal precision. The spatio-temporal patterns dealt with in this thesis also allow for
not zero-lag correlations in discretized time.

There are different methods for the detection of STPs on different time scales (Quaglio
et al. (2018)). SPADE is a method for detecting exactly repeating patterns with a pre-
cision in the millisecond range.

The challenge of the statistical evaluation of the detected patterns in a temporal
coding framework is equivalent to answer the question of how likely a pattern of a par-
ticular signature is to occur if the spike trains keep their statistics, while the correlations
disappear.

3The question to what extent they are detectable in multi-unit recordings is currently being addressed
in David Berling’s master’s thesis at our institute.
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Chapter 2

Point Processes

In the previous chapter, we introduced spike trains as temporal sequences of action po-
tentials of neurons. It is common to model spike trains by stochastic point processes.
Therefore, this chapter gives an overview of stochastic point processes and defines statis-
tical measures describing them. In particular, we discuss the Poisson process, an adapted
version of it called the Poisson process with refractoriness (PPR), and the gamma pro-
cess, whereby we distinguish between the stationary and non-stationary case. Finally,
we evaluate two methods to discretize the time of the point process.

2.1 Definition of Point Process

A stochastic point process is an ensemble of sets of time points (Helias et al. (2015)):

{t1, . . . , ti, . . . } with 0 ≤ ti ≤ ti+1 ∈ R+. (2.1)

In the given context, a set of time points corresponds to one realization of a spike train,
where we call each time point a spike time. We will discuss the fact that spike trains
are generally recorded on a finite time domain in section 2.3.

Each spike time ti can be described by a probability density function that we denote
as

ρi(ti|ti−1, . . . , t1) with

ˆ ∞
ti−1

dtiρi(ti|ti−1, . . . , t1) = ni ≤ 1. (2.2)

The case that the normalization ni < 1 means that there is a probability of 1− ni that
there is no further spike after ti−1 (van Vreeswijk (2010)). If not further specified, we
will only treat processes for which ni = 1 ∀i .

To derive statistical quantities we define an average operator over an ensemble of
spike trains:

〈f({ti})〉s :=

ˆ ∞∏
j=1

(dtjpj(tj |tj−1, . . . , t1)) f({ti}). (2.3)

Therefore, to obtain an average value, we integrate over the p.d.f for each time point ti.
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As already mentioned in the previous chapter, for the analysis of time-dependent
properties it is useful to represent a spike train as a time-dependent function (Helias
et al. (2015)):

s(t) :=
∞∑
i=1

δ(t− ti) with t ≥ 0. (2.4)

2.2 Descriptive statistics

Different statistical measures are commonly used in order to analyze the statistics of a
spike train. In the following, we introduce all measures needed in this and the following
chapters of the thesis.

2.2.1 Firing rate

The first measure, and one of the most fundamental, that we introduce is the firing rate.
Generally, it is intuitively defined as the average number of spikes emitted by a neuron
over time. Nonetheless, several similar (sometimes equivalent) definitions were given in
literature when dealing mathematically with spike trains formalized as stochastic point
processes (Dayan and Abbott (2001)). For example, we already defined the firing rate1

as being proportional to the probability of having a spike in an infinitesimal interval (eq.
1.1). Another equivalent definition2 averages over the realizations of the spike trains
(Helias et al. (2015)):

λ(t) := 〈s(t)〉s with t ≥ 0. (2.5)

As described in the previous chapter, the firing rate is an important measure to describe
spike trains’ statistics.

The recorded neuronal firing rates vary in general over time from a biological per-
spective (Kass et al. (2014)). Nevertheless, we say a point process to be stationary
when its rate does not change over time3:

λ(t) = λ > 0. (2.6)

Stationary point processes are more straightforward to treat analytically and also
give insights for the non-stationary ones.

2.2.2 Autocorrelation and autocovariance

The autocorrelation and autocovariance functions are used to calculate the impact of a
spike at time t onto the probability of having a spike at time t′.

1In the general theory of point processes, this quantity is called intensity function (Daley and Vere-
Jones (1988)).

2We show the proof for the equivalence of the two firing rates definitions in the appendix section A.1.
3In the general theory of point processes, it is distinguished between first-order and second-order

stationarity. The stationarity defined here would then correspond to the 1st order (Daley and Vere-
Jones (1988)).
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The autocorrelation function is defined as (Helias et al. (2015))

ψ(t, t′) =
〈
s(t)s(t′)

〉
s

with t, t′ ≥ 0. (2.7)

Furthermore, it is useful to define the autocovariance function as

ψ̃(t, t′) :=
〈(
s(t)− 〈s(t)〉s

)(
s(t′)− 〈s(t′)〉s

)〉
s

with t, t′ ≥ 0

= ψ(t, t′)− λ(t)λ(t′). (2.8)

2.2.3 Spike count statistics

Recorded spike trains are in general point processes on a finite time domain [0, T ].
On this finite domain, the spike count is defined as (Helias et al. (2015))

N(T ) :=
∞∑
i=1

Θ(T − ti)
(2.4)
=

ˆ T

0
dts(t) (2.9)

With Θ(x) being the Heaviside function defined as Θ(x) = 1 if x ≥ 0 and 0 else.
Intuitively, it represents the number of spikes emitted within the time interval [0, T ].

The distribution of spike counts is given by

pTN := Pr(N = #spikes in [0, T ]) = 〈δN,N(T )〉s. (2.10)

In the large time limit the distribution, of spike counts approximates a Gaussian
distribution for most of the point processes (Onken et al. (2009); Rajdl and Lansky
(2014)). Therefore, the distribution is then entirely described by the expectation value
and the variance:

E(N(T )) = 〈N(T )〉s, (2.11)

Var(N(T )) = 〈(N(T )− 〈N(T )〉s)2〉s. (2.12)

These two values can also be represented as integrals over the firing rate respectively
over the autocovariance:

E(N(T ))
(2.5)
=

ˆ T

0
dtλ(t), (2.13)

Var(N(T ))
(2.8)
=

ˆ T

0
dt

ˆ T

0
dt′ψ̃(t, t′). (2.14)

A typical measure for the variability of the spike count is the Fano factor (Nawrot
et al. (2008)):

FFT =
Var(N(T ))

E(N(T ))
. (2.15)

For spike trains originating from electrophysiological recordings, we replace the av-
erage operator 〈. . . 〉s by the average over trials 〈. . . 〉k introduced in section 2.3. In fact,
repeating trials of an experiment are the sample counterpart of the different realizations
of the same process.
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2.2.4 ISI-distribution

In order to analyze the characteristics of the surrogate method we are going to introduce,
we need to calculate statistics on the relationship between successive spikes. An inter-
spike interval (ISI) is defined as the time interval given by two subsequent spikes. We
can thus define the inter-spike interval distribution:

f(τ) = lim
T→∞

c1(T )

〈 ∞∑
i=1

δ(τ − (ti+1 − ti))Θ(T − ti+1)

〉
s

(2.16)

with c1(T ) =
1

E(N(T ))− 〈Θ(T − t1)〉s
≈ 1

E(N(T ))− 1
(2.17)

Our notation for the average over the ISI distribution is 〈. . . 〉τ =
´∞

0 dτ f(τ) . . . .

The mean ISI and the variance are

µτ := 〈τ〉τ (στ )2 := 〈τ2〉τ − (〈τ〉τ )2. (2.18)

A commonly used indicator of the regularity of a spike train is the coefficient of vari-
ation, defined as (van Vreeswijk (2010))

CV :=
στ
µτ
. (2.19)

Additionally, we define the joint-ISI distribution, which is particularly interesting
for us, since one of the surrogate methods taken into observation will be the joint-ISI
dithering (introduced in section 5.3). This distribution is a two-dimensional probabil-
ity density that gives the joint probability to have an inter-spike interval τ followed
subsequently by an interval τ ′.

f(τ, τ ′) = lim
T→∞

c2(T )

〈 ∞∑
i=1

δ(τ − (ti+1 − ti))δ(τ ′ − (ti+2 − ti+1))Θ(T − ti+2)

〉
s

(2.20)

with c2(T ) =
1

E(N(T ))− 〈Θ(T − t1) + Θ(T − t2)〉s
≈ 1

E(N(T ))− 2
(2.21)

Since it has been observed that the coefficient of variation is not an appropriate
measure for regularity when the process is non-stationary (van Vreeswijk (2010)), we
propose another more robust quantity, called CV2: 4

CV 2 = 2

〈
|τ ′ − τ |
τ ′ + τ

〉
τ,τ ′

. (2.22)

4The average operator of the joint-ISI distribution is 〈. . . 〉τ,τ ′ =
´
dτ
´
dτ ′f(τ, τ ′) . . .
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2.3 Spike Trains as finite-time point processes

As we have seen, electrophysiological recordings comprise a finite number of trials per-
formed for a stimulus or task. The spike train of each trial is thus recorded in a time
window [0, T ]. Statistical quantities like the firing rate or the ISI distribution are cor-
respondingly estimated either as average over trials or from a single trial. Trials are
indicated throughout the chapter, when necessary, with the index k.

Since the firing rate is, in general, a smooth, continuous function, it is determined
using kernel density estimation over the spike train (Shinomoto (2010)).

On a trial-by-trial basis, the firing rate would be (Shinomoto (2010))

λk(t) = (sk ~ h)(t). (2.23)

The average over trials 〈...〉k yield (Shinomoto (2010))

λ(t) = (〈sk〉k ~ h)(t). (2.24)

In principle, several normalized kernels h(t) can be used (Shinomoto (2010)). We
decided to use only a Gaussian function N (t, 0, σ2) here, with suitably chosen standard
deviation σ. Note that to choose the parameter σ is more challenging in the single-trial
condition (Cunningham et al. (2009)).

To estimate the ISI distribution and the joint-ISI distribution using a kernel density
estimation technique is more subtle than for the firing rate since these distributions are
defined on the positive domain of real space. Hence, problems arise in estimating the
range of small intervals τ of these distributions.

Therefore, these distributions are estimated using histograms, where it is then nec-
essary to choose a suitable discretization interval, or bin size b > 0:

fn = c1

ˆ (n+1)b

nb
dτ

〈
Nk−1∑
i=1

δ(τ − (ti+1 − ti))

〉
k

(2.25)

with c1 =
1

〈Nk〉k − 〈Θ(Nk − 1)〉k
,

fn,n′ = c2

ˆ (n+1)b

nb
dτ

ˆ (n′+1)b

n′b
dτ ′

〈
Nk−2∑
i=1

δ(τ ′ − (ti+2 − ti+1))δ(τ − (ti+1 − ti))

〉
k

(2.26)

with c2 =
1

〈Nk〉k − 〈Θ(Nk − 2) + Θ(Nk − 1)〉k
.

and with Nk indicating the spike count of the k-th trial.
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Nevertheless, in section 5.3, it will be necessary also to estimate the joint-ISI dis-
tribution for spike trains with a small number of spike counts. For this purpose, we
introduce Gaussian filtering with a narrow kernel width σ as:

fσn,n′ ∝
∑
m,m′

N (nb,mb, σ2)N (n′b,m′b, σ2)fm,m′ for n, n′ ≥ n∗. (2.27)

In order not to change the minimal inter-spike interval5 and using an initial guess of
the refractory period τ init

r , we set the minimal bin position n∗ as

n∗ = min

(
min
n

(fn > 0),

⌊
τ init
r

b

⌋)
. (2.28)

2.4 Models of Point Processes

In the following, we present the point process models of renewal processes and Markov
processes. The former is an extreme case of the latter. Renewal processes can be well
used to model stationary spike train data and Markov processes for non-stationary spike
trains. We will cover all relevant features like the ISI-distribution and the autocorrelation
function.

Then, we introduce typical renewal (and Markov) processes with a particular focus
on the Poisson process. Next, we concentrate on the Poisson process with refractoriness
(PPR) and gamma process. Both return to the Poisson process for appropriately chosen
parameters. These spike train models we use afterward to generate test data for the
analysis of SPADE.

2.4.1 Renewal processes

A renewal process is a process where the probability density of the spike time ti
depends only on the interval to the previous spike time ti−1. In mathematical terms,
this is expressed as6

ρi(ti|ti−1, . . . , t1) = p(ti − ti−1) ∀i > 1 (2.29)

with

ˆ ∞
0

dτ p(τ) = 1 and p(τ) = 0 for τ < 0

The probability density function p(τ) is called the renewal inter-spike interval (ISI)
distribution. It is easy to prove that this corresponds to the general definition of the
ISI distribution from eq. (2.16): p(τ) = f(τ). Thus, it possible to determine the density

5This will later be necessary to conserve the refractory period.
6This definition is less strict than commonly used like in Daley and Vere-Jones (1988).
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of the i-th spike time by recursively integrating the dependencies of prior spikes:

ρi(ti) =

ˆ
dti−1dti−2 . . . dt2dt1p(ti − ti−1)p(ti−1 − ti−2) . . . p(t2 − t1)ρ1(t1) (2.30)

=

{
ρ1(t1) if i = 1

(ρ1 ~ p(i−1)~)(ti) if i > 1

with p(i)~(τ) = (p~ · · ·~ p︸ ︷︷ ︸
i times

)(τ) for i ∈ N (2.31)

Since, by definition, here each spike depends uniquely from its previous, it follows that
subsequent ISIs are independent. For this reason, the joint-ISI distribution factorizes:

f(τ, τ ′) = f(τ) · f(τ ′) = p(τ) · p(τ ′). (2.32)

We define the positive-τ conditional firing rate as

λ+
c (τ) :=

∞∑
i=1

p(i)~(τ). (2.33)

This quantity indicates that for a given spike, the probability of having a spike in the
interval [τ, τ + dτ ] after that spike is λ+

c (τ)dτ .

In agreement with the positive-τconditional firing rate, we define the conditional
firing rate as

λc(τ) := λ+
c (τ) + λ+

c (−τ), (2.34)

which thus also indicates the probability of having a spike before a given spike.

We can derive a relationship between firing rate and positive-τconditional firing rate
as (see appendix eq: A.1)

λ(t) = ρ1(t) +
(
ρ1 ~ λ+

c

)
(t). (2.35)

The literature distinguishes between ordinary and equilibrium renewal processes (van
Vreeswijk (2010)). An ordinary renewal process is a process that starts with an un-
counted spike at t = 0. So that for the first spike holds ρ1(t1) = p(t1). While an
equilibrium renewal process is a process being from time zero already in its equilibrium
state, or differently formulated: the first spike is distributed such that the process is
stationary (Asmussen (2003)). Analytically:7(

ρ1 ~ λ+
c

)
(t) + ρ1(t) = λ (2.36)

7The equilibrium renewal process is usually defined in such a way that there is a spike at t � 0,
but the time window under consideration only starts at t = 0 (van Vreeswijk (2010)). However, our
definition is easier to use from an analytical point of view and is equivalent except for extreme cases.
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In this manuscript, we will only use the equilibrium renewal process since the property
of stationarity can be quiet advantageous.

Using the stationarity and the formula for the firing rate in renewal processes (see eq.
(2.35)), as derived in the appendix in eq. (A.8), the density of the first spike becomes

ρ1(t1) = λΘ(t1)

(
1−
ˆ t1

0
dτ p(τ)

)
(2.37)

This density of the first spike will later help us to describe the effect of discretization
of time (see section 2.5).

The autocorrelation function and the autocovariance simplify to (see appendix eq.
(A.2))

ψ(t, t′) = λδ(t− t′) + λλc(t− t′) (2.38)

ψ̃(t, t′) = λδ(t− t′) + λ(λc(t− t′)− λ) (2.39)

Therefore, it is sufficient to analyze the conditional firing rate in order to investigate
the auto-structure of the renewal processes.

Another well-known fact for renewal processes is that the Fano factor is related to
the CV by (Cox and Lewis (1966))

lim
T→∞

FFT = (CV )2 (2.40)

Thus, the relationship between the two is used to test if spike trains recorded in electro-
physiological recordings are underlined by renewal processes (Nawrot et al. (2008)). If
the deviation is too large, it is not justified to use renewal processes when dealing with
stationary spike trains.

2.4.2 Markov processes

A Markov process is a process where the probability density of the spike time ti depends
only on the previous spike time ti−1. Thus, the renewal process defined above is a
particular case of a Markov process.

The probability density of a spike time ti becomes then

ρi(ti|ti−1, . . . , t1) = p(ti|ti−1) ∀i > 0. (2.41)

with

ˆ ∞
0

dt p(t|t′) = 1 and p(t|t′) = p(t|t′) ·Θ(t− t′) (2.42)

We call this quantity p(ti|ti−1) the Markov density function.
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The ISI-distribution and the joint-ISI distribution from eqs. (2.16 & 2.20) become
following to appendix (see sec. A.3)

f(τ) = lim
T→∞

´ T
0 dt λ(t)p(t+ τ |t)´ T

0 dt λ(t)
(2.43)

f(τ, τ ′) = lim
T→∞

´ T
0 dt λ(t)p(t+ (τ + τ ′)|t+ τ)p(t+ τ |t)´ T

0 dt λ(t)
(2.44)

We will see later that these quantities are difficult to interpret since we did not
impose any constraint on the firing rate. The distributions can still be best understood
by approximating the firing rate as locally stationary.

Consider the case that the firing rate consists of locally stationary firing rates λi on
time intervals ∆Ti. On each of these intervals, the Markov process reduces to a renewal
process with renewal inter-spike interval function p(τ ;λi). When neglecting the ISIs that
will result from the boundaries between different stationary stages, the ISI and joint-ISI
distribution reduce to

f(τ) =

∑
i λi∆Tip(τ ;λi)∑

i λi∆Ti
, (2.45)

f(τ, τ ′) =

∑
i λi∆Tip(τ ;λi)p(τ

′;λi)∑
i λi∆Ti

. (2.46)

with p(τ ;λi) = p(t+ τ |t) for t in ∆Ti

This approximation is only valid, if ∆Ti >>
1
λi
∀i.

It can be derived, similarly as for the case of renewal processes, that the probability
distribution of the first spike is:

ρ1(t1) = λ(t1)−
ˆ t1

0
dt p(t1|t)λ(t) (2.47)

Similar to eq. (2.30), the distribution of the i-th spike becomes

ρi(ti) =

ˆ ti

0
dti−1p(ti|ti−1)ρi−1(ti−1) ∀i > 1 (2.48)

Thus, the firing rate can be expressed as

λ(t) =
∞∑
i=1

ρi(t) (2.49)

The autocorrelation and autocovariance become
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ψ(t, t′) = λ(t)δ(t− t′) + λ(t′)λc(t|t′) (2.50)

ψ̃(t, t′) = λ(t)δ(t− t′) + λ(t′)(λc(t|t′))− λ(t))) (2.51)

Finally, the conditional firing rate for a Markov process boils down to being the
firing rate at time t in the presence of a spike at time t′:

λc(t|t′) :=
λ+
c (t|t′)λ(t′) + λ+

c (t′|t)λ(t)

λ(t′)
(2.52)

with λ+
c (t|t′) :=

∞∑
i=1

pi(t|t′) (2.53)

and p1(t|t′) = p(t|t′) and pi(t|t′) =

ˆ t

t′
ds p(t|s)pi−1(s|t′) ∀i > 1

We have summarized the information on Markov processes here mainly for the sake
of completeness. This information will become especially useful when later research
extends the test case of false positives and false negatives to non-stationary spike trains.

2.4.3 Typical Spike Train models

We introduce here three point process models, which have a stationary version that is
renewal and a non-stationary version that is a Markov process. The Poisson and gamma
processes are widely studied in literature and standard approaches for modeling spike
trains (Nawrot et al. (2008)). The Poisson Process with refractoriness (PPR) is less
analyzed8 but will be of great importance for our purposes next.

In the following, we will limit ourselves to summarize the most relevant properties,
"table-like".

2.4.3.1 Poisson process

The Poisson Process is the most studied and simplest point process.

Stationary
The stationary version, which is a renewal process, can be defined in several ways.

Within the current framework, we define the Poisson Process via its ISI distribution,
which is an exponential decay (van Vreeswijk (2010)):

p(τ) = λ exp(−λτ)Θ(τ). (2.54)

We show this ISI distribution in figure 2.1, where it is denoted as a gamma process
(sec. 2.4.3.3) with shape factor γ = 1.

8Among the articles published about PPR spike trains, Deger et al. (2012) is particularly noteworthy.
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Another equivalent definition refers to the spike count distribution. The spike count
distribution corresponds for every interval [s1, s2] to a Poisson distribution (Daley and
Vere-Jones (1988)):

p
[s1,s2]
N := Pr(N = #spikes in [s1, s2]) =

(λ · (s2 − s1))N

N !
exp(−λ · (s2 − s1)). (2.55)

Additionally, the spike count distributions for two non-overlapping intervals are in-
dependent.

The distribution of the first spike is expressed as (van Vreeswijk (2010))

ρ1(t1) = p(t1). (2.56)

In correspondence to section 2.4.1, we have an equivalence between ordinary and equi-
librium renewal processes in the case of the Poisson process. This follows from what is
called the memoryless property of the process, that is reflected in its autocovariance:

ψ̃(t, t′) = λδ(t− t′). (2.57)

Thus, the presence of a spike at time t does not change the probability of having a
spike at t′ 6= t.

Moreover, all measures of regularity introduced before are constant and equal to 1
(van Vreeswijk (2010))) for a homogeneous Poisson process:

CV = CV 2 = FFT = 1. (2.58)

Consequently, it is a drawback of modeling a spike train as a Poisson process that
the regularity measures (CV , CV 2, FF) cannot be fit to those of the data.

Non-stationary
An extension of a stationary Poisson process, including a non-stationary firing rate,

is possible as a Markov process. Therefore, some replacements need to be applied: λτ
is replaced by

´ ti
ti−1

dt λ(t) and λ by λ(ti).Thus, the Markov density function becomes

p(ti|ti−1) = λ(ti) exp

(
−
ˆ ti

ti−1

dtλ(t)

)
Θ(ti − ti−1). (2.59)

The integral over the firing rate is also referred to as operational time t′ =
´ t

0 dt λ(t)
(Cox and Isham (1980); Nawrot et al. (2008); Louis et al. (2010b)). If the time of
the non-stationary Poisson process is transformed into this operational time, in this
operational time, the process will be stationary and renewal. Therefore, it is also called
a rate-modulated renewal process (Nawrot et al. (2008)).
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2.4.3.2 Poisson process with refractoriness (PPR)

The Poisson process with refractoriness (PPR) is an adaptation of the Poisson process,
which includes refractoriness. In the context of this master thesis, this process was inten-
sively dealt with and implemented in the software package elephant9 for the stationary
and non-stationary case.

Stationary
In order to take into account an absolute refractory period τr > 0, the exponential

decay of the ISI distribution of the Poisson Process is shifted by this τr. Consequently,
an effective firing rate λ̃ > λ needs to be introduced to keep the expected number of
spikes. This effective firing rate corrects for the time windows after each spike, in which
no spike can be emitted. Given that, we have λT spikes on average, the “blocked” time
windows sum up to λTτr. The average spike count should correspond to the effective
firing rate acting in the shortened time window T − λTτr and thus:

λ̃(T − λTτr) = λT ⇔ λ̃ =
λ

1− λτr
. (2.60)

The ISI distribution follows as

p(τ) = λ̃ exp(−λ̃ · (τ − τr))Θ(τ − τr). (2.61)

We show this ISI distribution in figure 2.1 for various refractory periods with a fixed
firing rate.

The distribution for the first spike results from eq. (2.37):

ρ1(t1) =


λ for 0 ≤ t1 ≤ τr
λ exp(−λ̃ · (t1 − τr)) for t1 > τr

0 for t < 0

. (2.62)

The CV (from Deger et al. (2012)) and CV 2 ( appendix eqs. (A.10 & A.11)) are given
as

CV =
λ

λ̃
= 1− λτr, (2.63)

CV 2 =

ˆ ∞
2τr

dt λ̃2 (t− 2τr)
2

t
exp(−λ̃(t− 2τr)) = 1− 2λτr +O

(
(τr)

2
)
. (2.64)

It is noteworthy that both the CV and CV 2 depend on the refractory period τ r.
A closed formula for the autocorrelation and the Fano factor also can be found in

Deger et al. (2012).

9Elephant is an open-source Python software package to analyze electrophysiological recordings. It
is mainly developed in out institut. https://elephant.readthedocs.io.
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Figure 2.1: ISI distributions for PPR and gamma processes using a firing rate of λ =
100 Hz. Note that the gamma process with γ = 1 is the Poisson process.

Non-stationary
The replacement needed to extend the stationary PPR to non-stationarity is not as

straightforward as for the Poisson process.
In accordance with equation (2.60), the effective firing rate needs to satisfy:

ˆ T

0
dt λ̃(t)

(
1−
ˆ t

t−τr
ds λ(s)

)
=

ˆ T

0
dt λ(t)⇒ λ̃(t) =

λ(t)

1−
´ t
t−τr dsλ(s)

. (2.65)

Hence, the effective firing rate at time t depends on the firing rate in the interval
[t − τr, t]. Further substituting λ̃ · (τ − τr) →

´ ti
ti−1+τr

dtλ̃(t) and λ̃ → λ̃(t1) yields the
Markov density function:

p(ti|ti−1) =λ̃(ti) exp

(
−
ˆ ti

ti−1+τr

dtλ̃(t)

)
Θ(ti − (ti−1 + τr)). (2.66)

Thus, this process is not a rate-modulated renewal process, since it does not depend
on an interval in operational time.

2.4.3.3 Gamma process

Gamma processes can be used to model both regular and bursty spike trains. In the
regular case, the inter-spike intervals get closer to the mean ISI 1

λ , while for the bursty
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case, it is more likely that the intervals are much smaller or higher.

Stationary
We define the gamma process via its ISI distribution that includes the shape factor

γ > 0 (van Vreeswijk (2010)):

pγ(τ) = γλ
(γλτ)(γ−1)

Γ(γ)
exp(−γλτ)Θ(τ). (2.67)

This ISI distribution can be seen in figure 2.1 for various shape factors with a fixed
firing rate.

With the shape factor, it is possible to distinguish between regular processes γ > 1
and bursty ones γ < 1. If γ = 1 it recovers the Poisson process.

For the p.d.f of the first spike (eq. (2.37)), it is necessary to introduce the upper and
lower incomplete gamma functions as

Γ(γ, x) :=

ˆ ∞
x

ds sγ−1e−s Γ̄(γ, x) :=

ˆ ∞
x

ds sγ−1e−s. (2.68)

Thus,

ργ1(t1) = λ
Γ(γ, γλt1)

Γ(γ)
Θ(t1). (2.69)

The measures of regularity for the stationary gamma process are (van Vreeswijk
(2010)):

CV =
1
√
γ
, (2.70)

CV 2 =
Γ(2γ)

γ (2γ−1Γ(γ))2 . (2.71)

An analysis of the Fano factor for stationary gamma processes can be found in Rajdl
and Lansky (2014).

Non-stationary
Here the same replacement is applied as for the Poisson process, leading the Markov

density function to be

pγ(t|t′) = γλ(t)

(
γ
´ t
t′ ds λ(s)

)(γ−1)

Γ(γ)
exp

(
−γ
ˆ t

t′
ds λ(s)

)
Θ(t− t′). (2.72)

Thus, depending on an interval in operational time
´ t
t′ ds λ(s), the non-stationary

gamma process can be also classified as a rate-modulated renewal process.
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2.5 Discretization of Time

We introduce discretization methods for spike trains while keeping in mind the question
of the temporal precision of the neuronal code and the spatio-temporal patterns. There
are two standard models of discretization, which are called binning and clipping. A
spike train, typically modeled as a continuous-time process, is discretized by dividing
the interval of time where it is defined into contiguous sub-intervals called bins of equal
length (bin size). The corresponding discretized spike train can contain in each bin either
the number of spikes (binning) or a 1 if the bin is occupied (clipping). Of course, a 0 is
assigned for both cases if the bin is empty. The clipping has the numerical advantage
that spike trains are converted into binary data. However, it is likely that not all spikes
are counted. Thus, the firing rate is reduced. This effect is small with suitably selected
bin size due to the refractory period in biological spike trains but can become significant
when using surrogate methods.

Since the SPADE algorithm uses clipped spike trains (see chap. 4), it will be essential
to pay attention to this concerning the surrogate methods. To give a first insight, we
analyze here the clipped firing rates for renewal point processes.

Using the bin size b > 0, the spike train is clipped in this way that in the m-th
bin it becomes

sclip
m =

{
1 if

´ (m+1)b
mb dt s(t) ≥ 1

0 else
. (2.73)

For renewal processes, we can calculate the clipped firing rate by integrating one bin
over the first spike’s probability density, since the integral indicates the probability of
having at least one spike in this first bin. Furthermore, Furthermore, since we chose the
processes to be in equilibrium and stationary, the clipped firing rate is constant for
all bins.

λclip =
1

b
〈sclip〉 =

1

b

ˆ b

0
dtρ1(t)dt (2.74)

This results in the following clipped firing rates for the three point process models
(see appendix A.5):

λclip
Poiss =

1

b
(1− exp(−λb)), (2.75)

λclip
PPR =

{
λ for b ≤ τr
λ τrb exp(−λ̃(b− τr)) + 1

b (1− exp(−λ̃(b− τr))) for b > τr
, (2.76)

λclip
γ = λ

Γ(γ, γλb)

Γ(γ)
+

1

b

(
Γ̄(γ + 1, γλb)

Γ(γ + 1)

)
. (2.77)

Here, we make use of the incomplete gamma functions defined in equation (2.68).
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Figure 2.2: Clipped firing rate for PPR (left) and gamma processes (right) using a bin
size of b = 3 ms. For the different parameters of the spike trains, we use different colors.
Note that the gamma process with γ = 1 is the Poisson process.

As can be seen in Figure 2.2, the effect of clipping is much stronger for gamma
processes than for PPR. Furthermore, the percentage of the firing rate decreases more
for higher firing rates. This can be understood by the fact that higher firing rates
compress the ISI distributions, making it more likely to get inter-spike intervals smaller
than the bin size. The bin size of 3 ms has been used as a standard parameter for
SPADE analyses in recent years, as the scale of temporal precision was assumed to be
in this range (Torre et al. (2013, 2016)). In possible analyses of the optimal bin size,
special attention should be paid to the effects on the clipped firing rate, which further
decreases the larger the bin size.

For the non-stationary Markov processes, one can approximate them well to be locally
stationary within each bin since the variation of firing rate is negligible in the range of
a few milliseconds. Therefore, it is also possible to estimate the clipped firing rate for
non-stationary processes. In further research, this is needed when estimating the clipped
firing rate for data from electrophysiological recordings.
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Chapter 3

Electrophysiological Recordings

The technique of recording the electrical activity of neurons is called electrophysiology.
These recordings are the experimental basis for the understanding of the mammalian
brain. In order to analyze the relation between neural activity and behavior, in vivo
recordings are needed. These are obtained by experiments using multielectrode arrays
implanted in the cerebral cortex. We call massively parallel spike trains, the spike trains
extracted from these recordings. The SPADE-method was developed to detect spatio-
temporal in this type of spike trains.

Any statistical analysis is designed to address and fit the statistical complexity of the
observed data. This is particularly important for electrophysiological recordings, where
the data is highly variable in time and multidimensional. To illustrate this, we introduce
an example data set already analyzed with a previous version of SPADE (Torre et al.
(2016)). We also display its most relevant statistical features, such as firing rate and
regularity measures.

3.1 Reach-to-Grasp data set

The data set that we call reach-to-grasp data set was recorded from Thomas Brochier
and his collaborators at the Institute of Neuroscience de la Timone (Marseille) in the
motor cortex of two macaque monkeys (Brochier et al. (2018)). The cited publication
does not only describe the experiment but also makes accessible a part of the recordings
to the scientific community. The monkeys had to perform an instructed delayed reaching
and grasping of an object, while an implanted 10x10 Utah electrode array was recording
the cerebral activity in the motor cortex. This recording did not only serve to extract
massively parallel spike trains but also yield recordings of the local field potential.

In each of the trials, the monkey had to perform the reach-to-grasp task in one of
four possible ways, indicated to the monkey by visual cues. The recordings are organized
into sessions of about 10 minutes. The trials within a session are typically divided into
epochs of 500 ms, related to specific behavioral contexts (Torre et al. (2016)).

According to the findings in Torre et al. (2016), we only show the data of the epoch
in which the movement happens. First of all, it is interesting to have a look at the firing
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rate profiles. We can see in figure 3.1 that the firing rates are notably non-stationary,
and they strongly vary across neurons. To see how the firing rates correlate to different
behavioral contexts or how the dynamics are for an entire session, readers may refer to
Riehle et al. (2018).

The fact that firing rates vary across neurons is critical for the detection and the
statistical evaluation of spatio-temporal patterns and thus for the design of the surro-
gate method. In order to understand this, it needs to be considered that the expected
occurrences of by-chance patterns are proportional to the product of firing rates (Pipa
et al. (2013)1). SPADE has shown of being able to deal with heterogeneous firing rates
for the case of simulated data (Quaglio et al. (2017); Stella et al. (2019)). The last two
studies take into consideration firing rates up to 25 Hz. However, in the reach-to-grasp
data set, we observe an inevitable part of neuronal units exceeding this strongly.

It also needs to be taken into account that the firing rate of a single neuron unit is not
constant over time, which does not directly translate to be a result of rate coding (which
we had discussed in sec. 1.2). However, an indication for the rate coding hypothesis
would be the correlation between the temporal dynamics of the neuron-averaged mean
of the firing rates for the whole trial and the corresponding behavioral context, which
can be seen in Riehle et al. (2018).

Since our purpose is to detect correlation not emerging uniquely by the firing rate, a
clear statistical distinction is necessary between by-chance patterns as a result of the fir-
ing rate co-modulations and significant patterns of rate co-modulated neuron units. This
distinction will be made by designing an appropriate null hypothesis for the statistical
test (see chaps: 4 & 5).

In order to further analyze the data set introduced here, we take into account the
statistical measures of the previous chapter (sec: 2.2). Specifically, we inspect CV , CV 2,
FF , and the minimal ISI for each neuron within the movement epoch for all trials of the
same sessions analyzed previously. The coefficient of variation CV is the first indicator
of the regularity of spike trains (see fig: 3.2). Since by definition it will be influenced
by the dynamics of the firing rates - that vary strongly - we also show the CV 2. It is
noteworthy that for both monkeys for average firing rates over 20 Hz, the CV 2 is smaller
than 1. Thus, it can be summarized that all “active” neuron units are regular. A similar
result can be seen in Riehle et al. (2018), where it is shown that the CV 2 is usually
smaller during movement than when the monkey is waiting.

The Fano factor, shown in the lower-left corner of the figure, interestingly seems to
be on average lower values for monkey 2 than for monkey 1. Since the spike trains cannot
be modeled by renewal processes - as a consequence of their non-stationarity - we do not
further analyze the relationship of CV and FF (see eq. 2.40).

The last panel of the two figures (fig. 3.2) shows the minimal inter-spike interval
(ISI) in the data. We analyze this quantity in addition to the CV and the CV 2 to see
in how far it is reasonable to model this spike trains with PPR spike trains instead of

1In that paper the relation of the expected occurrences to the firing rate is only shown for zero-lag
patterns. However, starting from their reasonings it is easy to show this for also for temporally extended
patterns.
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Figure 3.1: Firing rate profile of neurons of two sessions of the reach-to-grasp experiment
of two different monkeys (left and right panel, session i140703− 001 for monkey N and
session l101210−001 for monkey L). An epoch of 500 ms is shown, aligned to the switch
release (SR), which is the time point the movement starts. The firing rate is estimated
as described in sec. 2.3 using a kernel width of σ = 25 ms and averaging over trials. For
both monkeys, we highlight the firing rate profiles for the neurons with the five highest
time-averaged firing rates in colors. The other rate profiles are shown in grey. On the
left side, we see that most of the firing rates are below 25 Hz, and only a few neuron
units exceed this limit. Only one neuron unit exceeds an instantaneous firing rate of
85 Hz; this one goes up until 175 Hz. On the right side, no neuron unit exceeds an
instantaneous firing rate of 90 Hz.

what is typically done in the literature with gamma spike trains (Nawrot et al. (2008);
Pipa et al. (2013)).

For most neurons, the minimal ISI is close to the value of the spike wavelength used
for the spike sorting (Brochier et al. (2018)), which are 1.3 ms and 1.6 ms, depending
on the monkey. For these neurons, it is thus reasonable to argue that their minimal
interval between spikes is a consequence of the spike sorting process. Nonetheless, this
is a crucial quantity regarding the difference between firing rate and clipped firing rate
(see fig. 2.2), which must be taken into consideration when choosing an appropriate
surrogate method.
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Figure 3.2: We show the statistical measures introduced in chapter 2, i.e., CV , CV 2, and
FF for the recordings of both monkeys. Additionally, we present the minimal inter-spike
intervals (ISI) for each neuron. The dashed lines stand for the minimal possible value of
the ISI that is fixed during the spike sorting procedure (Brochier et al. (2018)). For all of
these four plots, these measures are plotted against the average firing rate of the neuron
unit. Each dot in the scatter plots represents a neuron. We highlight the neurons with
the five highest average firing rates again in colors.
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Chapter 4

SPADE

SPADE is an algorithm for the detection and evaluation of significant spatio-temporal
spike patterns at a precision level of milliseconds (Torre et al. (2013); Quaglio et al.
(2017); Stella et al. (2019)). It has been shown that it outperforms other methods for
the detection of spatio-temporal patterns (Stella (2017); Quaglio et al. (2018)). Its devel-
opment started as a tool for the detection of synchronous patterns (Torre et al. (2013))
and was extended to account for patterns with various temporal delays (Yegenoglu et al.
(2016); Quaglio et al. (2017); Stella et al. (2019)). We show the workflow of SPADE in
figure 4.1.

Figure 4.1: Workflow of SPADE.

The spike train data is first discretized using clipping (sec. 2.5). The clipped data
is then mined for spatio-temporal patterns using the Frequent Itemset Mining (FIM)
algorithm (Zaki (2004); Borgelt (2012); Picado-Muiño et al. (2013)), which yields pattern
candidates that are further evaluated for significance. At the same time, using one of
the dithering methods (a subcategory of surrogate methods) described and analyzed in
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chapter 5, different realizations of surrogate data are created, which are equally clipped
and mined yielding a corresponding p-value distribution, called the p-value spectrum
(Stella et al. (2019)). Subsequently, the candidate patterns can be selected according to
the p-value, corrected for multiple testing (Stella et al. (2019)). The test on the patterns
detected in the original data based on those retrieved in the surrogates is called Pattern
Spectrum Filtering. At the last step, the set of patterns is reduced, analyzing the mutual
conditional probabilities for each pair of two patterns. This step is called pattern set
reduction (Torre et al. (2013)).

In the following, we want to explain the mining technique FIM briefly and in detail,
the p-value spectrum and the pattern spectrum filtering. Since the pattern set reduction
does not strongly influence the evaluation of the dithering methods, we do not discuss
it here; it can be found in the mentioned paper.

4.1 Definition of Spatio-Temporal Patterns

In order to detect and evaluate spatio-temporal patterns, it is necessary to have a con-
sistent definition of it. Given a data set that contains N spike trains defined in the
time range [0, T ], whose clipped version is written snm for the n-th neuron1, we define
a pattern of neurons {n1, ..., nz} with delays {d1, ..., dz} (di ∈ N0; min(di) = 0) and a
number of occurrences c such that

bT
b
c−max(di)∑
m=0

z∏
i=1

(snim−di) = c. (4.1)

We show an example of this in figure 4.2. The bin positions of the pattern {m1, ...,mc}
correspond to those of the first spikes of the pattern. We can conclude that a spatio-
temporal pattern is uniquely described by the set of neurons {n1, ..., nz}, the set of delays
{d1, ..., dz}, and the set of non-zero bins {m1, ...,mc}. To simplify the classification of
the patterns, we assign to each pattern a signature (z, c, d), with z being the number of
neurons, c the number of occurrences, and d the maximal delay.

4.2 Mining of spatio-temporal patterns

The Frequent Itemset Mining (FIM) is a widely used mining technique originating from
market basket analysis (Zaki (2004); Borgelt (2012)). It was first applied to spike train
data by Picado-Muiño et al. (2013). A very instructive overview figure can be found in
Stella et al. (2019). Besides needing clipped spike trains as input and having a low cost
computationally, its outstanding feature is that it identifies directly patterns which are

1In order to facilitate, we omit here the “clip” superscript.
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Figure 4.2: Spatio-temporal pattern extracted from continuous-time spike train data.
Where first the step of clipping is shown and then the elements of formula (4.1). The pat-
tern taken into consideration consists of the neurons {1, 2, 3, 4} with the delays {2, 1, 1, 0}
and the bin positions {1, 3, 5}. We present this pattern’s spikes in green. Thus its sig-
nature contains the number of neurons z = 4, the number of occurrences c = 3, and
the duration d = 2 (the signature is thus (4, 3, 2)). In the first panel, we show the
continuous-time representation of the spike train, where each tick represents a spike. In
the second panel, the spike trains are discretized (clipped), and in each bin, we repre-
sent the presence/absence of a spike with 1/0, respectively. The clipped spike trains
are shifted in the third panel to represent their alignment when considering their lags
(product term in formula 4.1). Finally, the aligned spikes are summed to count the
number of occurrences in the last panel.
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trivially explained by others (Torre et al. (2013))2. Consider that the minimal occurrence
that FIM searches for patterns is set to c0 > 1 and the maximal duration to d0 ≥ 0.

4.3 P-Value spectrum and pattern spectrum filtering

A central element of the significance analysis of patterns in SPADE is the creation of the
p-value spectrum (Stella et al. (2019)). As we have seen, each pattern is characterized
by a signature (z, c, d)3, containing the number of included spikes z, the number of
occurrences in the data c, and the duration, i.e., the difference in bins between the first
and the last spike d. The set of pattern signatures for the data set is denoted S.

To obtain a p-value for each signature, nsurr surrogates are created by one of the
surrogate methods described in chapter 5. An analysis with FIM gives for each surrogate
j a list of pattern candidates in the data. The set of pattern signatures for this surrogate
is called Sj .

From each surrogate data set a binary function is extracted:

fj(z, c, d) =

{
1 if ∃z∗ ≥ z ∧ ∃c∗ ≥ c with (z∗, c∗, d) ∈ Sj
0 else

(4.2)

The p-value spectrum results as an average of these binary functions over the surro-
gates.

pv(z, c, d) = 〈fj(z, c, d)〉surr (4.3)

Thus, the p-value spectrum function describes for each pattern signature (z, c, d) the
probability of finding a signature with higher or equal pattern size z and with higher or
equal pattern occurrence c in the data set.

An example of this three-dimensional p-value spectrum can be seen in figure 4.34.
With the help of this figure it can also be intuitively understood, why not only the
pattern size z and its occurrence c are parameters for the p-value spectrum, but also
the duration d. With increasing size z the combinations of the ways how a by-chance
pattern can occur increase roughly proportional to dz−2.5 Thus, for a pattern to be
significant, it needs more occurrences for higher durations, which is accounted for in the
3-dimensional p-value spectrum (Stella et al. (2019)).

2If the set of spikes of a pattern is a subset of spikes of another pattern, then it is trivially explained
by this other pattern.

3There are two versions of SPADE one were the signature contains only the size and the occurrence,
and one which also contains the duration. The latter, called 3d-SPADE, was introduced in Stella et al.
(2019). This paper also analyzed the advantages of the new version examining false positives and false
negatives. In this thesis, we only use the 3d-version of SPADE.

4Readers may also refer to the corresponding figure in Stella et al. (2019).
5The term dz−2 arises from the fact that z − 2 spikes can be placed freely within a window of length

d, since one spike has to be the first, and one has to be the last.
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Figure 4.3: Three-dimensional p-value spectrum that results as a mean value from the
realizations of 100 p-value spectra. Each was created by the use of 5000 Joint-ISI sur-
rogates (∆ = 15 ms) of 20 independent PPR spike trains (τr = 3 ms) of a rate of 80 Hz
and a duration of 1 s. In the three-dimensional p-value spectrum, a p-value is assigned
to each signature (z, c, d). Each subplot corresponds graphically to a pattern size z. The
number of occurrences c is shown on the x-axis and the duration in bins d on the y-axis.
A color then represents the p-value for each point in this three-dimensional space. On
the right side, we show the corresponding logarithmic color bar. Here the reddish colors
correspond to p-values from 1 to about 0.1, while in bluish tones all p-values below 10−4

are shown. If no value is displayed, the p-value determined by surrogates is precisely
zero.
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To finally evaluate the patterns for significance, the patterns of S are first reduced
to those having a p-value smaller than 1: S′. The signatures of S′ are then compared to
a significance threshold α using a multiple testing correction typically either the Holm-
Bonferroni correction (Holm (1979)) or the Benjamini-Hochberg correction (Benjamini
and Hochberg (1995)).

As described above, as the last step, SPADE performs the pattern set reduction test
to remove the patterns that are a by-product of the overlap of existing patterns and
chance spikes. This test consists of three subtests: the subset filtering, the superset
filtering, and the test for covered spikes (Torre et al. (2013)). Each of these tests can be
adjusted with a parameter. The underlying question is how to compare two overlapping
patterns, one with more spikes and fewer occurrences and one with fewer spikes and
more occurrences.

The patterns detected by FIM and surviving the two testing steps are the final result
of the SPADE method.

38



Chapter 5

Surrogate Methods

In order to assess the significance of spatio-temporal patterns, we have to formulate a
null-hypothesis accordingly. In our context, the null hypothesis states that the patterns
detected in the data are a by-chance product of the statistical properties of mutually
independent spike trains (Quaglio et al. (2017); Stella et al. (2019)). To implement this
null hypothesis, we employ a Monte Carlo approach that creates surrogates with similar
properties as the original spike trains. Since the time-varying firing rates and other
properties can only be estimated for spike trains from electrophysiological recordings, the
used surrogate methods randomly displace each spike slightly from its original position1.
The approach chosen for previous studies in the context of the SPADE method is called
"dithering" (Louis et al. (2010a)). The same approach was already used widely in
literature and similar studies (Date et al. (1998); Nádasdy et al. (1999); Hatsopoulos
et al. (2003); Shmiel et al. (2006); Stark and Abeles (2009); Louis et al. (2010b)).

We will present three dithering methods below. We will then analyze them in terms
of the surrogate spike trains’ statistical properties, like the resulting ISI-distribution and
autocorrelation function. Based on this, we will evaluate which of the surrogate methods
are most suitable for our requirements.

5.1 Uniform dithering

The method of uniform dithering was introduced in Date et al. (1998) and had become
one of the standard approaches to create surrogate spike trains (Louis et al. (2010a)).
In order to destroy precise temporal correlations and thus to create almost mutually
independent spike trains, uniform dithering adds an increment δ to each spike time,
where δ is uniformly distributed: δ ∝ U(−∆,∆) (Louis et al. (2010a)).

The dither parameter ∆ > 0, which must be chosen appropriately, determines the
maximal displacement of a spike from its original position. If we write the p.d.f. of the

1An overview can be found in Louis et al. (2010a).
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Figure 5.1: Sketch explaining the uniform dithering method. On top, we represent the
original spike train. We embody each spike by a tick (green). On the bottom, we display
the corresponding dithered spike in orange. Grey dotted boxes represent the range of the
interval of the uniform distribution, centered on the original spike. Note that the ranges
for different spikes can intersect each other. Figure inspired by Louis et al. (2010a).

displacement of each spike, which is a normalized boxcar function as2

u(δ) =
1

2∆
Θ(∆− |δ|), (5.1)

the firing rate of the surrogates follows as (Louis et al. (2010b)):

λδ(t) = (λ~ u)(t). (5.2)

In general, this will smooth the underlying firing rate of a spike train (Louis et al.
(2010b)).

The cross-correlation ψcc between a spike train s(t) and its surrogate spike train
sδ(t

′) = s(t′ + δ), is described by

ψcc(t, t
′) := 〈〈s(t)sδ(t′)〉s〉δ

(2.7)
= 〈ψ(t, t′ + δ)〉δ =

ˆ
dδ u(δ)ψ(t, t′ + δ). (5.3)

The quantity is important to measure in how far the surrogate spike trains differ
from the original ones. Thus, we introduce as a measure of similarity the rate of spikes
which are in the same bin for the original and the surrogate spike trains: λb(t). This is
evaluated by integrating over the cross-correlation function for one bin size b > 0 as

λb(t) :=
1

b

〈〈 ˆ b/2

−b/2
dτ

ˆ b/2

−b/2
dτ ′ s(t+ τ)s(t+ τ ′ + δ)

〉
s

〉
δ

(5.4)

(5.3)
=

1

b

ˆ b/2

−b/2
dτ

ˆ b/2

−b/2
dτ ′ψcc(t+ τ, t+ τ ′)

2The corresponding average operator is 〈. . . 〉δ =
´
dδ u(δ) . . . .
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For renewal processes the cross-correlation follows directly by plugging equation
(2.38) into equation (5.3):

ψcc(t, t
′) = λu(t− t′) + λ(λc ~ u)(t− t′). (5.5)

Thus, the cross-correlation between original data and its surrogate contains two-
terms. The first one being a boxcar function, and the second one being the convolution
of the conditional firing rate λc (see eq. (2.34)) and the p.d.f. of the uniform dithering.

From now on, for the sake of simplicity, we will concentrate on renewal processes
only. As we observed already in section 2.4.1, renewal processes exhibit a constant rate.
For this reason, by plugging equation (5.5) into (5.4), we see that the rate of spikes in
the same bin is thus constant over time containing two terms:

λb =
1

b

ˆ b

−b
dτ (b− |τ |)

(
λu(τ) + λ(λc ~ u)(τ)

)
(5.6)

=
λb

2∆
+
λ

b

ˆ b

−b
dτ (b− |τ |)

(
(λc ~ u)(0) +O(τ2)

)
= λb

(
1

2∆
+ (λc ~ u)(0)

)
+O(b3).

Note that the linear term of the expansion of (λc~u)(τ) vanishes due to the symmetry
of both λc and u.

The first term is proportional to the probability that a spike will be displaced within
the same bin in which it previously was: this probability is b

2∆ . A trade-off arises when
choosing the dither parameter ∆ appropriately. On the one hand, the firing rate should
not be too strongly flattened (see eq. (5.2)) and as well the firing rate of the clipped
surrogate spike trains (see eq. (5.14)), discussed later on, should be as high as possible,
while on the other hand λb should be small. If the λb is high, not enough spikes may be
displaced to destroy temporal correlations. As a result of this reasoning, if the bin size
b is varied, ∆ should be changed accordingly such that the ratio b

∆ stays constant.

The second term stands for spikes displaced into the bins where other spikes had been
in the original spike train since it originates from the second part of the autocorrelation
(eq. (2.38)). This term impacts more for high firing rates because of the conditional
firing rate λc scaling with the firing rate λ.3

In the appendix B.2, we derive closed forms for the expression of the rate of spikes
falling in the same bin λb for the case of the PPR and the gamma process (where we
make use of the effective firing rate λ̃4 and the incomplete gamma function Γ̄5:

3The asymptotic behavior of λc(τ) is that it tends towards the firing rate λ for τ → ±∞ because the
presence of a spike does not affect the probability of having a spike infinitely far away from it. Comparing
to figure 5.2, we conclude that it need only a few steps of the mean ISI, i.e., 1/λ, that λc(τ) is very close
to λ.

4Effective firing rate: λ̃ = λ
1−λτr (see eq. (2.60))

5Incomplete gamma function: Γ̄(γ, x) :=
´∞
x
ds sγ−1e−s (see eq. (2.68))

41



λPPR
b =

λb

2∆

1 + 2

⌊
∆
τr

⌋∑
n=1

Γ̄(n, λ̃(∆− nτr))
Γ(n)

+O(b3), (5.7)

λγb =
λb

2∆

(
1 + 2

∞∑
n=1

Γ̄(nγ, γλ∆)

Γ(nγ)

)
+O(b3). (5.8)

For the Poisson process, we can solve λb without the approximation of (λc~u)(τ), as
applied in eq. (5.6), since λc = λ, an effect of the memoryless property (see eq. (2.57)).
This equality plugged into eq. (5.6) yields

λPois
b = λb

(
1

2∆
+ λ

)
. (5.9)

The autocorrelation function of the surrogate spike trains is closely related to the ISI
distribution of the surrogates. As stated at the beginning of this section, surrogate spike
trains should be almost mutually independent and should approximately conserve the
original spike trains’ statistical features. We would see this conservation if the surrogates’
autocorrelation function is close to that of the original point process.

In the appendix B.1, we show how this autocorrelation for uniform dithered surro-
gates can be derived, which is written as

ψδ(t, t
′) = λδ(t)δ(t− t′) +

ˆ
ds

ˆ
ds′φ(s, s′)u(t− s)u(t′ − s′) (5.10)

with φ(s, s′) := ψ(s, s′)− λ(s)δ(s− s′).

It contains the smoothed firing rate (see eq. (5.2)) and a term that follows from two
convolutions with the boxcar function of the uniform dithering.

For the case of renewal processes, we can use the autocorrelation already formulated
in chapter 2, and obtain the surrogate autocorrelation function as:

ψδ(t, t
′) = λδ(t− t′) + λ(λc ~ u~ u)(t− t′). (5.11)

We show different autocorrelation functions for PPR and gamma processes and their
uniformly dithered surrogates in figure 5.2. Additionally, we vary the refractory period
τr for the PPR and the shape parameter γ for the gamma process. The initial processes
are in full lines, while dotted lines represent the surrogates. Most importantly, we see
in the figure that the uniform dithering does not conserve the spike train’s refractory
period. Besides the refractory period, the autocorrelation function is, in general, not
conserved after uniform dithering in the case of these processes. Considering that the
solid blue line in the subplot on the right corresponds to the autocorrelation of the
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Figure 5.2: Autocorrelation function before (solid line) and after uniform dithering
(dashed line), not displaying the central delta-function. On the left, we show PPR
processes with different refractory periods (in different colors). On the right, we see
gamma processes with different shape factors presented in different colors. Note that
the gamma process with γ = 1 is the Poisson process. Since ψ(t, t′) depends only on the
difference between t and t′, we show on the x-axis this difference in ms. On the y-axis,
we show the autocorrelation function over the firing rate. We take this ratio, such that
the baseline corresponds in both cases to the firing rate. The firing rate of 80 Hz is at
the upper end of firing rates of neuronal recordings (see chap. 3). We choose such a
high firing rate since we observe high numbers of false positives for uniform dithering for
high rates (see chap. 6). The dither parameter of 15 ms used here is a typically chosen
value (Quaglio (2019)).

Poisson process, it is possible to state that surrogates created by uniform dithering tend
to have more Poisson-like properties than the original spike trains since the dotted lines
tend to get closer to the blue line.

In order to measure the firing rate of the clipped spike train after applying uniform
dithering, it is necessary to approximate the ISI distribution for small τ . We will, there-
fore, simplify by approximating the resulting surrogate spike trains to be renewal. To
approximate like this is only possible for the regime of very small τ , especially regarding
the negative serial correlations that arise from uniform dithering (see fig. 5.11). In this
way, we will be able to calculate the ISI distribution from the autocorrelation function
(which is directly related to the conditional firing rate) of the surrogate spike trains.

In the appendix B.3, we show how to obtain the ISI distribution of a renewal process
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Figure 5.3: Clipped firing rate for PPR and gamma processes before and after uniform
dithering (solid/dashed line). We use a dither parameter of ∆ = 15 ms, and a bin size
of b = 3 ms. Note that the gamma process with γ = 1 is the Poisson process. The
different colors correspond to different configurations of the PPR spike trains (left) and
the gamma spike trains (right). While the x-axis shows the initial firing rate in Hz, the
y-axis shows the ratio of the clipped firing rate over the initial firing rate.

after uniform dithering in the small τ limit. The result is

pδ(τ) =
(
λu − (λu)2τ +O(τ2)

)
Θ(τ) with λu := (λc ~ u~ u)(0). (5.12)

The second convolution of the conditional firing rate at τ = 0, which we call here λu
can be understood as

λu = lim
ε→0

1

ε
Prob(spike in [t, t+ ε] after UD | other spike at t after UD) ∀t > 0. (5.13)

Thus, it reflects the probability in the surrogates that a spike follows directly after
another one.

The clipped firing rate follows (by using eqs. (2.37) and (2.74))

λclip = λ

(
1− 1

2
λub+

1

6
(λub)

2

)
+O(b3). (5.14)

Values for λu for PPR and gamma processes can be found in appendix B.2. We show
the dependence of the clipped firing rate on the firing rate in figure 5.3. Both for the
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PPR and the gamma spike trains (with γ > 1), we observe a substantial decrease of the
clipped firing rate, i.e., the solid lines in figure 5.3 representing the original spike trains
lay much higher than the dashed lines representing the surrogates. Thus, using uniform
dithering as the surrogate method yields a reduction in the spike count, and as we will
see in chapter 6, this is a source of false positives that need to be taken into account
carefully.

5.2 Uniform dithering with refractoriness

Figure 5.4: Scheme showing how to achieve the conservation of the absolute refractory
period when transitioning from uniform dithering to uniform dithering with refractori-
ness.The left part is the same as in figure 5.1. In the upper blue line, every green tick
stands for a spike of an original spike train, while the orange ticks of the lower line rep-
resent the spikes of the surrogate. The boxes refer to the space in which the spike can
be possibly displaced via the uniform dithering. For the UDR, shown on the right, these
boxes are changed that they do not overlap anymore. Not only do they not overlap, but
they are adjusted such that the interval between two spikes in the surrogate cannot be
smaller than the refractory period τr. Figure inspired by Louis et al. (2010a).

As we have seen in the previous chapter, the firing rate decreases strongly due to the
interference between clipping and uniform dithering. To prevent this, we introduce an
adaptation of the uniform dithering that we call uniform dithering with refractori-
ness (UDR).6

The basic idea is that we adjust the dithering range for each spike in such a way
that the absolute refractory period is conserved (see fig. 5.4). We have seen in figure 2.2
how the clipped firing rate depends on the refractory period. Essentially, the closer the
refractory period to the bin size, the closer the clipped firing rate to the firing rate. Note
that by the way, spike trains are recorded extracellularly and spike sorted, an absolute
refractory period always exists (see sec. 3.1). Therefore, preserving the refractory period
will, for all spike trains, reduce the difference between clipped and initial firing rate.

6The reader can find the implementation of this algorithm as part of the software package elephant.
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For this purpose, we estimate the refractory period of the spike train data as the
minimum of inter-spike intervals and an initial (biological) guess τ init

r > 0.

τ est
r = min(min(ti − ti−1), τ init

r ) (5.15)

For the sake of conserving the refractory period between spike i and spike i+ 1, the
maximal displacement of spike i, i.e., ∆i

+, has to be such that ti + τ est
r + ∆i

+ ≤ ti+1.
Since the UDR should go in the limit of low firing rates back to the uniform dithering,
∆i

+ can be maximally ∆. Subsequently, we set ∆i
+ to:

∆i
+ := min((ti+1 − ti − τ est

r ),∆). (5.16)

In the same way, we define ∆i
− as:

∆i
− := min((ti − ti−1 − τ est

r ),∆). (5.17)

The increment δ added to spike i is distributed as δ ∝ U(−∆i
−,∆

i
+):

uir(δ) :=
1

∆i
+ + ∆i

−
Θ(∆i

+ − δ)Θ(δ + ∆i
−). (5.18)

It is important to note that every spike is updated individually, where the order of
the spikes to be updated is a random sequence.

For low firing rates, the difference of the adapted version to the original uniform
dithering is small. In contrast, for high firing rates, we can expect the spikes to be
displaced less, on average, since every spike is tied between the spikes surrounding it.

The analytical evaluation of the quantities we introduced for uniform dithering is
not possible to perform here since every spike is displaced, depending on the positions of
its neighbors. For this reason, we would need to introduce more advanced point process
models allowing the incorporation of serial ISI correlations to study the behavior of the
UDR analytically.

Nonetheless, it is possible to say that non-negligible serial correlations arise when
creating surrogate spike trains from renewal processes. Instead of calculating analyti-
cally, we refer to the later section 5.4, where the autocorrelation and cross-correlation
functions and their deduced quantities are compared numerically across the surrogate
methods.

5.3 Joint-ISI dithering

The joint-ISI dithering is a method that was introduced by George Gerstein in 2004
(Gerstein (2004)) and further developed in Louis et al. (2010b). Gerstein introduced
it as a method that (approximately) conserves firing rate profile and ISI distribution.
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Figure 5.5: The figure shows the joint-ISI distribution of a spike train and the displace-
ment of a spike within the joint-ISI space. The joint-ISI distribution displayed here is
the analytical joint-ISI distribution for a gamma process of a firing rate of 50 Hz. Since
it is a renewal process, the joint-ISI distribution corresponds to the product of two ISI
distributions (see eq. (2.32)). In both x- and y-axes, we show ISIs in ms, i.e., the interval
to the previous τ and the interval to the next τ ′. The color code displays the values of
the joint-ISI distribution. A spike is shown with intervals of 25 ms to the previous spike
and 20 ms to the next spike. This spike can be displaced on the dotted line, limited by
±∆. On this line, the spike is displaced according to a one-dimensional projection of
the two-dimensional joint-ISI distribution. Figure inspired by Louis et al. (2010b).

An essential difference to the previous methods is that the spikes are not displaced
according to a uniform distribution. Instead, a spike is displaced based on the intervals
to the previous and subsequent spike. The change in these intervals happens according
to the joint-ISI distribution.

For simplicity, we will first introduce the displacement procedure for a continuous
joint-ISI distribution.

Given a spike train with joint-ISI distribution f(τ, τ ′), the displacement of the spike
i at time ti will depend on the time points ti−1 and ti+1, and it is defined as7

ui(δ) ∝ f((ti + δ)− ti−1, ti+1 − (ti + δ))Θ(∆− δ). (5.19)

How the displacement of spikes looks like in the joint-ISI space can be seen in figure
5.5. It mostly conserves the ISI-distribution (see sec. 5.4) and the absolute refractory

7The original version of the joint-ISI dithering applied a square root to the joint-ISI distribution
(Gerstein (2004); Louis et al. (2010b)). In the appendix sec. B.4, we argue why this is only reasonable
for small ∆. Inside the implementation that we added to the software package elephant, users still can
use the original version.
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period by moving each spike by the corresponding section of the joint-ISI distribution.
Conserving the refractory period is a result of the constraint:

f(τ, τ ′) = 0 for τ < τr or τ ′ < τr, (5.20)

which together with eq. (5.19) does not allow moving a spike inside a refractory
period of another spike. Additionally, we first update the even- and then the odd-
numbered spikes, which is computationally advantageous8.

As we discussed in sec. 2.3 for finite time spike trains, it is necessary to use a binned
version of the Joint-ISI distribution applying adapted Gaussian filtering. In this binned
fashion, the probability of displacing i-th spike by d bins of size b becomes:

uid ∝ Θ(b∆
b
c − d)fσ

b ti−ti−1
b
c+d,b ti+1−ti

b
c−d

. (5.21)

Additionally, we truncate the joint-ISI histogram into a triangle with side length W ,
i.e., fσn,n′ is only defined for m+m′ ≤ bWb c (lower triangle of the joint ISI distribution)
since the estimation of the joint-ISI distribution tends to be worse the larger the inter-
spike intervals. Due to the triangle structure, more bins would need to be filled for
higher ISIs. In our implemented approach, if a set of two inter-spike intervals is outside
this triangle, the corresponding spike in the middle is dithered according to the UDR
protocol (see sec. 5.2).

To create a suitable null hypothesis using joint-ISI surrogates, we need to choose
suitable parameters for the dither parameter ∆, the kernel width σ, the truncation limit
W , and an initial guess for the refractory period τ init

r
9. Further, we select the bin size b

with which we create the joint-ISI histogram. This bin size is not necessarily the same
as the one used in SPADE, usually smaller. How to choose all these parameters depends
on the statistics of the spike train data.

We will present the performance of the joint-ISI dithering regarding auto- and cross-
correlation functions in the next section.

5.4 Comparison of surrogate methods

Comparing the different surrogate methods is based on examining different measurable
quantities before and after applying the surrogate methods. For this purpose, we test
the three above introduced methods on PPR and gamma processes. Onto these, we
then apply uniform dithering and UDR, both with a dither parameter of ∆ = 15 ms.
Finally, we use joint-ISI dithering with a dither parameter of ∆ = 15 ms, a kernel width
of σ = 1 ms, an initial refractory period of τ init

r = 4 ms, and a bin size of b = 1 ms.

8This is in contrast to the procedure of Louis et al. (2010b).
9The initial refractory period τ init

r is used in eq. (2.28).
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5.4.1 Firing rate profile

First of all, we analyze how the dithering methods affect the firing rate profile. To this
end, we generate data, the firing rate profile representing a step function that first has
a firing rate of 10 Hz for 50 ms and then a firing rate of 80 Hz for another 50 ms. These
are the same parameters used for a similar analysis in Louis et al. (2010a). We show the
resulting firing rate profile for each surrogate method in figure 5.6. Note that the firing
rate change does not depend on the further statistical properties of the spike train. For
the uniform dithering, we can see that the theoretically determined change in the firing
rate is confirmed (see eq. 5.2). The deviations from the result of the uniform dithering
for UDR and joint-ISI dithering are very small. Interestingly, the firing rate profile that
is yielded by UDR is significantly lower for the interval between 60 ms and 70 ms, which
can be explained as a consequence of the asymmetric displacement protocol (see eq.
5.18). Nonetheless, we conclude that all three methods smooth the firing rate similarly.

5.4.2 Cross-correlation

The second quantity to analyze is the cross-correlation function, expressing the similarity
between the original artificial data and its surrogates. We show it in figure 5.7. For
uniform dithering, we see that for PPR and gamma spike trains, the cross-correlation
has its maximum at ±∆ = ±15 ms. At the same time, when using UDR or joint-ISI
dithering on the PPR spike trains, it is possible to see a reflection of the refractory
period in the cross-correlation. There are peaks in the cross-correlation at ±3 ms10 and
a lower peak at 0 ms. These peaks are a consequence of spikes whose dithering range is
limited by the refractory period. For gamma processes, similar behavior between UDR
and joint-ISI dithering can be observed, with the difference that the UDR has a peak
for 0 ms, while for joint-ISI dithering at 0 ms it has a local minimum.

Regarding the rate of spikes in the same bin for the original data and the surrogate,
which we have introduced as λb, we can deduce from the cross-correlation that for PPR
spike trains UDR and joint-ISI dithering will perform similar and better as the uniform
dithering. While for the gamma process, the UDR will perform worse than the other
two, a result of small ranges of the increments (see eq. (5.18)) if the average ISI becomes
smaller than the dither parameter ∆.

Quantitatively λb is displayed in figure 5.8. We see there that the ratio λb/λ increases
monotonously for all surrogate methods and is higher than the corresponding quantity
calculated for a spike train generated independently, with the same characteristics. Fur-
ther, we observe that for the PPR spike trains (left figure), UDR and joint-ISI dithering
have almost identical values, and they are lower than the value for the uniform dithering.
Instead, gamma spike trains attain the highest value in the case of UDR and lowest for
the joint-ISI dithering. Since a high value corresponds to effectively a low number of
spikes displaced, we conclude that, regarding λb, the joint-ISI dithering performs best.

10It is not at the refractory period of 2.5 ms since the cross-correlation function uses a bin width of
1 ms.
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Figure 5.6: The figure shows the firing rate profile before and after dithering. On the
left side, this is shown for PPR spike trains (τr = 2.5 ms) and on the right side for
gamma spike trains (γ = 2). For both, we generate 105 realizations, and we dither each
realization once with each surrogate method. To omit boundary effects, we create them
for a domain of −15 ms to 115 ms, but we only show the firing rate between 0 ms and
100 ms. To obtain the firing rate, we count the number of spikes per bin (bin width of
1 ms). The resulting firing rate in Hz is shown as a function of time in ms. We see it
for the artificial data itself (art. in blue) and their corresponding results of the uniform
dithering (UD in orange), the uniform dithering with refractoriness (UDR in green), and
the joint-ISI dithering (JISI in red). The used parameters for the surrogate methods,
we describe in sec. 5.4.
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Figure 5.7: The cross-correlation function of artificial data against its surrogates is
displayed here divided by the firing rate. Thus, the baseline is the firing rate, i.e., 80 Hz.
On the left panel, it is shown for PPR spike trains (τr = 2.5 ms) and on the right for
gamma spike trains (γ = 2). Due to the time translation invariance for renewal processes,
we show a projection of ψcc(t, t

′) depending only on the difference t− t′ given in ms. The
results for the three surrogate methods are differently colored, i.e., uniform dithering
(UD), uniform dithering with refractoriness (UDR), and joint-ISI dithering (JISI). For
each spike train type, we generate a 6250 s long spike train that we dither using each of
the three methods. The cross-correlation function is obtained with a bin size of 1 ms.
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Figure 5.8: The plot shows the ratio of the rate of spikes in the same bins for the
original spike train and surrogate over the initial firing rate shown as a function of the
initial firing rate in Hz. On the left panel, it is for PPR spike trains, while on the
right panel for gamma processes. The solid blue lines show the value of this ratio if
instead of a surrogate, we create another independent spike train of this type. The other
dashed lines show how many spikes are in the same bin, if the spike train is dithered
with uniform dithering (UD), uniform dithering with refractoriness (UDR) or joint-ISI
dithering (JISI). We obtain these values on spike trains with an expected spike count of
5 · 105 spikes, the lowest firing rate being 5 Hz, which is increased in steps of 5 Hz. It
is noteworthy that for the discretization here, the spike trains were only binned and not
clipped (see sec. 2.5).
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Figure 5.9: The ISI distributions for PPR processes (τr = 2.5 ms, left) and gamma
processes (γ = 2, right) are shown and of their surrogates. The x-axis corresponds to
the ISI τ in ms and the y-axis to the ISI-distribution p(τ) in Hz. The values for the
artificial data (art.) are in blue, the ones for the surrogates methods in orange (uniform
dithering, UD), green (uniform dithering with refractoriness, UDR), and red (joint-ISI
dithering, JISI). The generated data is the same as for fig. 5.7.

5.4.3 ISI-distribution

Since its ISI distribution entirely describes a renewal process, we examine the resulting
ISI distribution after the application of all dithering methods in figure 5.9. The joint-ISI
dithering should by construction conserve the ISI-distribution. We observe that this
is mostly fulfilled, but we also see a small reduction of the ISI distribution for small
τ . This reduction for small τ is compensated by a shift of probability mass into the
range from 10 to 20 ms. Thus, the coefficient of variation will also increase slightly. For
the uniform dithering with refractoriness, we observe that applied on the PPR spike
train, it almost exactly preserves the ISI distribution, while for the gamma spike train,
the yielded ISI distribution has low similarity to the original distribution. For uniform
dithering in both cases, the ISI distributions appear to be similar to exponential decay,
and the original process cannot be distinguished anymore. Thus, we conclude that the
joint-ISI dithering is the method of choice given the constraint that the ISI distribution
is part of the statistical properties mentioned in the null hypothesis.
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5.4.4 Autocorrelation function

Closely linked to the ISI-distribution is the autocorrelation function (see eqs. (2.33) &
(2.38)). While the ISI-distribution shows when the next spike happens, the autocorrela-
tion function shows when other spikes occur. One of the information that it contains is
the interval after a spike on which it effectively has no influence anymore on the prob-
ability of the next spike, i.e., when the autocorrelation converges to the baseline. Also,
it shows when it becomes more likely to have a spike after a certain interval. We can
observe this in figure 5.10. The autocorrelation for the surrogate spike trains of the
joint-ISI dithering applied on PPR and gamma spike trains is higher than the baseline
in a range of approximately 10 to 20 ms. The same holds for the UDR applied on PPR
spike trains and is a sign of arising positive serial correlations (van Vreeswijk (2010)).
We see that both methods can come closer to the autocorrelation of the artificial data
as the uniform dithering. It is difficult to conclude from this since neither the arising
of serial correlations nor the deviation from the autocorrelation function is a desired
property of the surrogate method.

Regarding the serial correlations, whose coefficients are defined as (Perkel et al.
(1967))

ξk =
〈τi+kτi〉 − 〈τi〉2

〈τ2
i 〉 − 〈τi〉2

with τi = ti+1 − ti, (5.22)

we can measure the dependence of inter-spike intervals on their predecessors. In a
renewal process, there are no serial correlations since every ISI is drawn independently
from the same distribution p(τ) (see sec. 2.4.1). However, as we can see in figure 5.11,
serial correlations arise using the dithering methods. For uniform dithering, these are
strong negative serial correlations, i.e., after having a short ISI, it is more likely to get
a long ISI and vice versa. For UDR, instead, this depends on the spike train model,
whether it is a PPR or a gamma process. The joint-ISI dithering shows in both cases
positive serial correlations.

It is still debatable if surrogate spike trains should have rather positive or negative
serial correlations. Indeed, they should be as small as possible. In this regard, the UDR
and the joint-ISI dithering have more desirable properties than the uniform dithering.

5.4.5 Clipped firing rate

The last analyzed quantity is the clipped firing rate. To create a null-hypothesis suitable
for conservative significance tests, the clipped firing rate of the surrogates should be close
to that of the data. The comparison across the three dithering methods can be found
in fig. 5.12. First of all, we can state that in the case of uniform dithering, the clipped
firing rate is much lower than the initial firing rate of the data. This reduction is an
effect of the uniform dithering destroying the absolute and the relative refractory period,
which corresponds to the autocorrelation being unequal to zero at a zero time lag (see
5.10). Thus, the use of uniform dithering could yield having a null-hypothesis with a
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Figure 5.10: We show the autocorrelation function for PPR spike trains (left panel, τr =
2.5 ms) and gamma spike trains (right panel, γ = 2) and its corresponding surrogates,
omitting the central delta-peaks. Also, using its time invariance, it is shown only the
one-dimensional projection depending on the difference t− t′ in ms. To provide a better
understanding of the baseline, we divided the autocorrelation function by the firing
rate of 80 Hz. Thus, the baseline corresponds to the firing rate. We chose different
colors for the artificial data (art., blue) and the surrogate methods, which are uniform
dithering (UD, orange), uniform dithering with refractoriness (UDR, green), and joint-
ISI dithering (JISI, red). The generated data is the same as for fig. 5.7.
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Figure 5.11: The figure shows the first five orders of serial correlation coefficients for
PPR spike trains (τr = 2.5 ms, left) and gamma spike trains (γ = 2, right) after usage of
a dithering method. The dithering methods are uniform dithering (UD, orange), uniform
dithering with refractoriness (UDR, green), and joint-ISI dithering (JISI, red). We show
the order of the coefficients on the x-axis and the coefficients on the y-axis. The data
corresponds to artificially generated spike trains of a rate of 80 Hz in a time window of
105 s.
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Figure 5.12: In this figure, we show the ratio of clipped firing rate over the firing rate for
artificial data and its surrogates as a function of the firing rate. The clipping here, we
perform with a bin size of 3 ms. We show the difference between PPR spike trains (left;
τr = 2.5 ms) and gamma spike trains (right; γ = 2). Also, the discrepancy can be seen
between the results for the artificial data (art.) and the surrogate methods: uniform
dithering (UD), uniform dithering with refractoriness (UDR), and joint-ISI dithering
(JISI). The firing rate in Hz is on the x-axis and the ratio λclip/λ on the y-axis. The
generated data used are the same as for fig. 5.8.

significantly lower spike count. Instead, UDR fits very well with the firing rate of the
artificial data for PPR spike trains, regarding gamma processes, the clipped firing rate is
slightly higher than for the uniform dithering. For the gamma processes, we can explain
this by the fact that there is no absolute refractory period to preserve. The high clipped
firing rate for the gamma spike trains themselves is an effect of the tail of low ISI in
the ISI distribution. This ISI-distribution is not preserved using the UDR (see fig. 5.9),
and thus the clipped firing rate related to the UDR does not differ strongly from that of
the uniform dithering. The joint-ISI dithering is in both cases of artificial spike trains
close to the clipped firing rate of the data itself and thus seems to be in this regard an
appropriate choice.

In the chapter on point processes, we have already discussed that the firing rate is
proportional to the expected value of the spike count (see sec. 2.2.3). We determine the
variance of the spike count’s distribution using the autocovariance (see sec. 2.2.3). Also,
for the clipped spike count, the clipped firing rate is proportional to the expected value,
but the spike count of a single realization is not always equal to the expected value.

If we create surrogates for spike trains from electrophysiological data, only their
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spike count is known, while the firing rate can only be estimated. Therefore, it is worth
discussing the clipped spike count, in addition to the clipped firing rate. There is both
a clipped spike count, which results solely from the clipping of the spike train, and the
distribution of the clipped spike counts for the clipping of the surrogate spike trains since
we generate several surrogates for each spike train, whose clipped spike counts can vary.

In figure 5.13, we now show the clipped spike counts of the electrophysiological spike
trains of the reach-to-grasp data, and the mean value of the clipped spike counts for the
surrogates. At first, we observe that the clipped spike count tends to decrease for higher
firing rates. However, no clear function can be identified, which was to be expected,
given the differences in the minimum ISIs (see fig. 3.2). Furthermore, the clipped
spike count of uniform dithering is considerably lower than that of the other surrogate
methods. However, no apparent differences are observable between the UDR and the
joint-ISI dithering, sometimes one value is higher than the other. One reason for this is
that the reach-to-grasp data does not exactly match either of the two spike train models
analyzed. For most neurons, the clipped spike counts of these two surrogate methods are
close to those of the spike train data. Nevertheless, we notice a considerable difference
for some neurons, such as the neurons with the highest firing rates for both monkeys.
Thus, we conclude that in terms of clipped spike count, UDR and joint-ISI are much
closer to the original data than the uniform dithering, but they do not match completely.

5.4.6 Conclusion

We have investigated different statistical properties of surrogate spike trains. First of
all, we noticed that the change in the firing rate profile is very similar for all three
dithering methods. Although using the uniform dithering with refractoriness, we notice
that it is more likely to displace spikes only a little with gamma processes. Concerning
the resulting autocorrelation of the spike trains, there are significant differences. Only
joint-ISI dithering manages to keep the ISI distribution approximately the same for both
analyzed spike train types. With UDR, this is also true for PPR spike trains. Regarding
the autocorrelation function, the joint-ISI dithering and the UDR are closer to the
underlying function than the uniform dithering. It is noteworthy that serial correlations
are measurable for all methods.

At last, and probably most importantly, we have analyzed the clipped firing rate, i.e.,
the effective firing rate after the discretization of time. There is a clipped firing rate both
for a spike train type generically and for its surrogates. The difference between these
clipped firing rates is particularly significant for uniform dithering. This reduction of the
firing rate can lead to fewer spikes in the surrogates than in the original spike train data
and should, therefore, be avoided. We could also observe a similar but smaller firing rate
reduction in the combination of uniform dithering with refractoriness and gamma spike
trains. When analyzing the reach-to-grasp data for the clipped spike count, the UDR
and the joint-ISI dithering perform similarly and significantly better than the uniform
dithering. Overall, concerning the clipping aspect, we recommend joint-ISI dithering,
where the surrogates have a similar clipped spike count as the underlying spike trains.

The only disadvantage besides needing more computational time is that the estimate
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Figure 5.13: Ratio of clipped spike count over the spike count for two data constellations
of the reach-to-grasp data and its surrogates as a function of the average firing rate, i.e.,
the spike count over the recording duration. We show the spike count ratio for each
neuron with a dot for clipping with a bin size of 3 ms. In the left and the right panel,
we show data for two different monkeys. Also, the difference can be seen between the
results for the original data (orig., blue) and the surrogate methods: uniform dithering
(UD, orange), uniform dithering with refractoriness (UDR, green), and joint-ISI dither-
ing (JISI, red). For the surrogates, it corresponds to a mean value of 200 surrogate
realizations. The average firing rate in Hz is on the x-axis, and the ratio of clipped spike
count over the spike count on the y-axis.
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of the joint-ISI distribution is inadequate if the spike train has a low spike count. Hence,
it is to apply only for a reasonable number of recorded trials or if the spike train duration
is sufficiently long.

The following chapter analyzes test data with SPADE using these three different sur-
rogate methods to evaluate false positives and false negatives and to link this evaluation
to the quantities described above.
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Chapter 6

False Positives and False
Negatives

The analysis of false positives and false negatives is of central importance for evaluating
a statistical method. In the case of SPADE, false positives and false negatives have
been studied already (Quaglio et al. (2017); Stella et al. (2019)) by generating and
analyzing patterns in Poisson spike trains. Here we want to extend this evaluation
to PPR and gamma spike trains, focusing in particular on the comparison across the
different surrogate techniques presented earlier in this thesis.

While the analysis of independently generated data can examine false positives for
SPADE, an evaluation in terms of false negatives is more challenging to achieve. For
this reason, we will first turn to the analysis of false positives. We restrict ourselves to
stationary spike trains, whose firing rates do not vary across neurons. In a second step,
we will introduce how to inject spatio-temporal patterns into independently generated
data to see how the rate of false negatives depends on the surrogate method.

6.1 False positives

As we have discussed in chapter 4, the null hypothesis against which to test is that the
detected spatio-temporal patterns are a by-chance product of mutually independent spike
trains. The procedure is such that mined patterns are pooled by their signature (number
of spikes, number of occurrences, duration), and each group of pattern candidates with
the same signature can individually reject the null hypothesis. The confidence level is
adjusted utilizing multiple testing. All patterns rejecting the null hypothesis are classified
as statistically significant.

6.1.1 Ground truth null hypothesis

If SPADE analyzes a data set of independently generated spike trains, we should obtain
a false positive rate corresponding to the confidence level. Possible reasons for false
positives can be: A) the deviation of the p-value spectrum estimate to the underlying
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one, if the surrogate method used is inadequate for the type of data at hand, and B)
how technically the number of tests is calculated when correcting for multiple testing.

According to the previous chapters, we will deal with PPR (τr = 2.5 ms) and gamma
(γ = 2) spike trains. Thereby, we generate 100 data sets of 20 spike trains, each with
firing rates ranging from 10 to 100 Hz (with steps of 10 Hz). Due to a large amount
of computing time required (Stella et al. (2019)), we have limited the duration of the
spike trains to one second. We used these parameters for SPADE: a bin size of 3 ms, a
confidence level of 5%, and we set the maximum pattern duration d0 to 5 bins (i.e., 15
ms). Furthermore, we looked only at patterns containing 2 to 5 spikes, allowing only one
spike per neuron1. In order to create the ground truth p-value spectrum, we generated
the set of 20 spike trains again 5000 times. These data sets were then used as surrogate
datasets to calculate the p-value spectrum. Additionally, p-values are corrected for
multiple testing with the Holm-Bonferroni approach.

One could argue now that the spike counts of the ground truth surrogates do not
match those of the generated data precisely, as is the case when using the dithering
methods. This arguing corresponds to whether the same statistical properties required
by the null hypothesis (see chap. 5) mean the same firing rate or the same spike count.
While the first option is closer to the notion of statistical property, the second option is
usually preferred because it is easier to measure. Even if we choose the surrogates’ spike
count to be similar to that of the original spike trains, we can still use these ground truth
surrogates because the spike count distribution is the same, and the deviations can be
neglected if we use enough spike trains, in our case 20. However, this is only possible
because the individual spike trains’ identity has no meaning due to the pooling of the
pattern signatures.

In figure 6.1, the false positive rate is shown using this ground truth null hypoth-
esis. We consider a false positive any pattern that results when applying SPADE. In
principle, since the generated spike trains are independent, no pattern should be de-
tected in our data. An optimal result would be a false positive rate around or under
the fixed significance level. Starting from this observation, we can see from the figure
that the false positive rate averaged over firing rates (dashed blue line) is significantly
lower than the confidence level of 5% (dashed grey line). We can interpret this may
as a result of how to carry out the multiple testing. Therefore, we explain briefly how
the Holm-Bonferroni correction is implemented in SPADE. The algorithm characterizes
every pattern candidate contained in the data using a signature (z, c, d) (see chap. 4).
Each group of patterns with the same signature is tested against the null hypothesis if
its corresponding p-value is less than exactly one. A p-value of one would correspond to
a pattern signature being in all surrogates.

Using the Holm-Bonferroni correction (Holm (1979)), the signature with the lowest
p-value is tested against the ratio of the confidence level and the number of tests. If
this test rejects the null hypothesis, the next lowest p-value is compared against the
confidence level divided by the number of tests minus one. Thus, every rejection of the

1The chosen parameter chosen for the pattern set reduction are (2, 2, 2). They are just mentioned for
completeness, but will not play an important role here.
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Figure 6.1: The figure shows the rate of false positives that results from SPADE analyzing
a set of 20 1s long independent spike trains. In the left and right panel, we consider
PPR spike trains (τr = 2.5 ms) and gamma spike trains (γ = 2). The required p-value
spectrum was not calculated using surrogates, but instead newly generated spike trains
of the same type. The spike trains’ underlying statistics are known, which we can use to
get a ground truth null hypothesis distribution. The x-axis shows the firing rate in Hz,
and the y-axis shows the false positive rate: the number of false positives averaged over
the realizations of the data set. The dashed grey line represents the confidence level of
5%, while the dashed blue line shows the average of the false positive rate over firing
rates.
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null hypothesis lowers the number of tests by one. The first time the null hypothesis is
not rejected, we stop testing further against the null hypothesis. By construction, this
procedure keeps the family-wise error, i.e., the probability of having at least one false
positive, below the confidence interval (Holm (1979)). It seems that in our case, the
false positive rate is further decreased due to the many tests that arise from the three
dimensions of the p-value spectrum. It is still an ongoing object of research in how far
it is possible to decrease the number of tests, e.g., by testing for each pattern size z
and duration d only the pattern signature with the highest occurrence c. Nevertheless,
when comparing these results to false positive rates yielded by the usage of the surrogate
methods, they shall also result in a false positive rate lower than the confidence level.

Finally, we can see that the false positive rate does not depend on the firing rate.
The mean false positive rate of the gamma spike trains is higher than for PPR spike
trains, but according to the standard error of the mean shown in figure 6.5, it is not
possible to clearly distinguish between the two.

For the evaluation of the surrogate methods, we can say that according to the results
of the ground truth null hypothesis, the false positive rates should not be much higher
than 2%.

6.1.2 Null hypotheses using surrogate techniques

In order to analyze the effect of the three surrogate methods on the false positive rate of
SPADE’s results, we used the same datasets and the same parameters as in the previous
section. The only difference here is that we used dithering surrogates (UD, UDR, JISI)
for the generation of the null hypothesis. We apply SPADE to the datasets separately per
dithering method, comparing our three surrogate techniques in terms of false positives
(patterns resulting from each analysis).

The result can be seen in figure 6.2. In the upper plot, we observe a firing rate
dependence of the false positive rate related to the uniform dithering. For the PPR
spike trains of 100 Hz, this yields having an average of more than 8 false positives per
realization. In contrast, the increase of the false positive rate for the gamma spike trains
is smaller, but it results in a false positive rate of more than 1 for a firing rate of 100 Hz. It
can be seen clearly in the figure that the first values exceeding the confidence level are for
50 Hz (PPR) and 60 Hz (gamma). We can interpret the results as a consequence of the
clipped firing rate discussed in sec. 5.1 and shown especially in fig. 5.3. The difference
between the spike count of the clipped spike trains and that of its clipped surrogates
becomes more considerable for higher the firing rate. The effect is less intense for the
gamma process as for the PPR (see fig. 5.3) and is reflected as such in the false positive
rate. For firing rates until 40 Hz (PPR) or 50 Hz (gamma), the uniform dithering does
not differ significantly compared to the other surrogate methods.

We can see the impact of the difference in spike count between the ground truth and
uniform dithering, also comparing the p-value spectra. We show them in figure 6.3 and
in the appendix (figs. C.2 - C.4). For almost all combinations of size, occurrence, and
duration, the p-value obtained by uniform dithering is smaller than the ground truth
p-value, independent of the spike train type. Additionally, it seems that for every size,
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Figure 6.2: The figure shows the rate of false positives that results from SPADE analyzing
a set of 20 1s long independent spike trains. In the left and right panel, we show PPR
spike trains (τr = 2.5 ms) and gamma spike trains (γ = 2), respectively. We calculate
the p-value spectrum using surrogates created with uniform dithering (UD, orange),
uniform dithering with refractoriness (UDR, green), and joint-ISI dithering (JISI, red).
The x-axis shows the firing rate in Hz, and the y-axis shows the false positive rate, i.e.,
the number of false positives averaged over the realizations of the data set. The dashed
lines represent for each surrogate method the average over firing rates. The grey dashed
line shows the confidence level.
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the p-value spectrum is shifted towards lower occurrences. The smaller the pattern size,
the stronger is this shift. Thus, most of the false positives when using uniform dithering
should arise for a small pattern size. In fact, in our data, slightly more than 50 have a
pattern size of two, as can be seen in the appendix in fig. C.1. For the case shown here
of a firing rate of 80 Hz and PPR spike trains, 51 of 92 false positives consist of only two
spikes.

Before discussing further the results of the false positives, we first address the graphs
of the p-value spectra just introduced (fig. 6.3, as well as in the appendix figs. C.2 -
C.4). At a firing rate of 80 Hz, we show the p-value spectra for both spike train types
and all four ways to create the spectra. To simplify the comparison between the p-value
spectra generated by different methods, we also show them as contour plots (see fig.
6.4). Shifts in the p-value spectrum are, therefore, made more visible. First of all, we
can see that in terms of ground truth for PPR spike trains, the p-values are generally
slightly higher than for gamma spike trains. Although we do not intend to analyze this
in detail, we can at least say that it can be understood as a result of the differences in
the autocorrelation (Pipa et al. (2013)).

For PPR spike trains, besides the already described shift for uniform dithering, it
can be noted that the p-value spectra for UDR and joint-ISI dithering are very similar
to the ground truth. The closeness is because both the autocorrelation function and the
clipped firing rate fit very well (see sec. 5.4).

In the case of gamma spike trains, the p-value spectra of joint-ISI dithering are very
similar to the ground truth. While for the UDR, there is a comparable, smaller shift as
for the uniform dithering. We attribute this to the fact that the clipped firing rate for
UDR decreases in this case, like for the uniform dithering (see sec. 5.4.5).

Further analyzing figure 6.2, we can observe that for the joint-ISI dithering, the
false positive rates are between 0 and 5%, with an average close to 2%. There is no
observable dependence on the firing rate. Regarding the average over firing rates of the
false positives (see fig. 6.5), the difference between ground truth and joint-ISI is much
smaller than one standard error of the mean. Thus, even if this mean is a bit higher, it
can not be stated that this is a significant tendency.

For PPR spike trains, there is mostly no difference to the usage of uniform dithering
with refractoriness and joint-ISI dithering regarding the false positives as already shown
in the p-value spectra (fig. C.2). In contrast, for gamma spike trains with firing rates
over 80 Hz, the false positive rate increases with the firing rate for both, but more
strongly for UDR. The increase is due to the change in the clipped firing rate (see sec.
5.4.5), which corresponds to the shift in the p-value spectrum.

Concluding the analysis of false positives performed here, we can affirm that the
joint-ISI dithering performs very close to the ground truth null hypothesis. While the
uniform dithering shows a substantial increase in false positives for high firing rates, and
the UDR also shows this increase, it only starts at very high firing rates.

In further research, this analysis of false positives needs to be extended not only to
varying rates across neurons but also to non-stationary rate profiles for single neurons.
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Figure 6.3: The figure shows the p-value spectrum corresponding to 20 independently
generated PPR (τr = 2.5 ms) spike trains of 1 s (upper panel) and to uniformly dithered
spike trains (lower panel). In both cases, it is an average over the 100 data sets used
to analyze the false positives of this specific firing rate. The three dimensions of the
p-value spectrum are shown as such that every size has one subpanel. On the x-axis are
the occurrences and on the y-axis the durations in bins. We show the p-values according
to the logarithmic colormap on the right side.
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Figure 6.4: The figure shows contour lines for the p-value spectra for PPR spike trains
(upper panel) and gamma spike trains (lower panel). The p-value spectra themselves
are shown in figures 6.3 & C.2 - C.4. The contour lines correspond to p-values of 50%
(marked with squares), 5% (pluses), 0.5% (circles) and 0.05% (xs). We calculate the
exact marker positions employing linear interpolation. The four ways to create the p-
value spectra we present in different colors: ground truth null hypothesis (GT, blue),
uniform dithering (UD, orange), joint-ISI dithering (JISI, red) and UDr (green). The
three dimensions of the p-value spectrum are shown as such that every size has one
subpanel. On the x-axis are the occurrences and on the y-axis the durations in bins.
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Figure 6.5: The figure shows the average of the false positives rates displayed in figures
6.1 & 6.2 over the firing rate. In addition to the mean, the error bars represent the
standard error of the mean. It is shown for PPR (left) and gamma (right) spike trains
with the null hypotheses: ground truth (GT, blue), uniform dithering (UD, orange),
uniform dithering with refractoriness (UDR, green) and joint-ISI dithering (JISI, red).
Since the average false positive rate of the uniform dithering is high (see fig. 6.2), it is
not shown in the panel for the PPR spike trains passing the limits of the scale.
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6.2 False negatives

The analysis of false negatives is closely related to how we think the characteristics of
true positives could be. In particular, one should consider whether the statistics of spike
trains with spatio-temporal patterns should be different from those of the other spike
trains without patterns. Furthermore, one may ask to what extent the occurrences of true
positives should stand out from those of by-chance patterns. We have limited ourselves
here to generating spike trains with spatio-temporal patterns following the same ISI
distributions as the independent spike trains. This generation is more subtle for PPR
and gamma spike trains than for Poisson spike trains, which were analyzed in Quaglio
et al. (2017); Stella et al. (2019). False negatives in this setting would be then: patterns
suitably injected into artificial data, and not detected by SPADE. By comparing the
number of false negatives across the different surrogate techniques, we can understand
which methods are more appropriate to detect patterns in electrophysiological data. In
order to choose the number of occurrences of the true positive patterns appropriately, we
have taken the approach to select them according to the p-value spectrum of independent
spike trains. The results expressed in terms of false negatives finally make it possible to
distinguish which surrogate method is most likely to detect true positives.

6.2.1 Data generation with spatio-temporal patterns

In order to create PPR and gamma spike trains with spatio-temporal patterns, we use
two properties of Poisson spike trains. First, the superposition of Poisson spike trains
is again a Poisson spike train. This property allows us to generate a set of spike trains
with a spatio-temporal pattern as a superposition of a shared pattern spike train with
firing rate λp and an individually generated background spike train with reduced firing
rate λr = λ − λp (Cardanobile and Rotter (2010)). Secondly, it is possible to generate
PPR and gamma spike trains (if the shape factor γ is an integer) starting with Poisson
spike trains. The Poisson process with refractoriness is achieved from a Poisson process
by deleting every spike that is closer to its preceding spike than the refractory period τr
(see appendix C.3). To delete every but the γ-th spike effects the transition from the
Poisson to the gamma process instead (Heeger (2000)). So that the resulting PPR or
gamma spike train has a firing rate equal to λ, the firing rate of the associated Poisson
spike train needs to be λ̃(λ) = λ/(1− λτr) and λ̃(λ) = γλ, respectively.

Combining this, we can create a spatio-temporal pattern containing n spikes by
creating one Poisson spike train representing the first spike of the patterns, and by
copying it n times. In this way, we create spike trains representing the patterns only,
where each spike train has a rate of λ̃(λp). In order to generate patterns with a particular
configuration of delays between spikes, we shift the "pattern spike trains" appropriately
by the delay. Moreover, for each of the n spike trains, we create another Poisson spike
train of rate λ̃(λ − λp), representing the background activity. Pattern spike trains and
background spike trains are then superimposed, leading to the final version of the spike
train, containing both the inserted pattern and additional independent spikes. Spikes are
deleted in this superposition of spike trains (differently for PPR and gamma processes)
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in the manner described above.

Our data sets contain 100 realizations (as for the analysis of false positives). More-
over, we decide to shift only the last of the n spike trains to obtain the duration, e.g., a
pattern of three spikes and three bins long will have the first two spikes synchronous, and
the last spike will occur two bins later. In each realization, we insert only one pattern.
Finally, for each combination of duration and size, patterns are equally represented in
the number of realizations. Sizes vary from 2 to 5 spikes, while durations are fixed in
the range of 1 to 5 bins.

The occurrences for each of these inserted patterns are chosen such that in the p-value
spectrum of independent spike trains (see figs. 6.3 & C.3), it would be the minimum
number of occurrences for which the corresponding p-value is below 0.05%. With this
choice, it is to expect that even with a high number of multiple tests of 100, SPADE
should detect these patterns and identify them as significant.

We call cz,d(λ) the fixed number of occurrences of each generated pattern. Since
we operatively generate pattern spike trains with a rate λp, different realizations do not
generally lead us to this cz,d(λ). However, there is a relationship between the pattern rate
λp and the expected value of the occurrences c̄z(λp;λ), which we determine numerically2.
We do this for each combination of firing rate λ and pattern size z by generating this set
of spike trains for different λp and averaging the resulting values of cz(λp;λ) for each λp.
The intermediate values we estimate via linear interpolation. In order now to create a
pattern of occurrences cz,d(λ), we set the pattern rate according to c̄z(λp;λ) = cz,d(λ) and
generate this set of spike trains until the occurrence of the inserted pattern corresponds
precisely to the value cz,d(λ).

With this procedure, we generate data for the same values of firing rates as in the
previous section, and we analyze this data with SPADE.

6.2.2 Analysis of data with spatio-temporal patterns

The analysis of the data with the true positive spatio-temporal patterns was mainly with
the same parameters as the analysis for false positives in sec. 6.1. The only difference
is in the parameters of the pattern set reduction. The pattern set reduction tests two
patterns against each other that contain a set of identical spikes. We set the parameters
such that SPADE identifies more likely the pattern of the larger size as significant3.

Before measuring the number of false negatives, it is necessary to define a false
negative. In principle, a false negative is a pattern injected in the data and not detected
by SPADE. We relax this definition by fixing that a not detected, injected pattern will
not be classified as a false negative, if it is overlapping within at least two neurons of
one of the patterns detected by SPADE (and conserving the lags between the spikes).
Accordingly, we define a false positive as any pattern detected by SPADE for which
neurons and lag configurations do not overlap in the described manner with the injected

2We do not distinguish here for the different durations since the differences are negligible as being
only a cause of the boundaries. Thus, we determine c̄z(λp;λ) only for synchrony patterns.

3The corresponding parameters are (1,3,2).
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pattern. Finally, we calculate false negative/false positive rates by averaging the number
of false negatives/false positives over the data sets.

We show the resulting false negative rates in figure 6.6. The first observation is that
by using uniform dithering, there are slightly less false negatives than if the ground truth
p-value spectrum is applied. For the data sets of gamma spike trains, we detect no false
negatives when using uniform dithering. We can relate this result to what we discussed
in the false-positive section (see sec. 6.1.2): Due to the shift in the p-value spectrum, it
is more likely to detect false positives but also true positives

We observe that we have higher false negative rates for both uniform dithering with
refractoriness and joint-ISI dithering than by applying the ground truth null hypothesis.
For PPR spike trains, we further observe a firing rate dependence: false negative rates
increase for firing rates higher than 60 Hz. Again, this can be related to what we have
already discussed in the sections 5.4.2 and 5.4.5. On the one hand, we have seen that
there is a probability that not enough spikes are displaced, possibly causing not to
destroy the patterns when creating surrogates. On the other hand, for UDR, there is
a very close match in terms of the clipped firing rate. Thus, since we do not have a
shift in the p-value spectrum, injected patterns not destroyed in the surrogates (even
if it is only a tiny number) can yield them to be not classified as significant. For the
joint-ISI dithering and PPR spike trains, it is a similar situation, but the clipped firing
rate is slightly lower than for the UDR (see sec. 5.4.5). The resulting shift in the p-value
spectrum then compensates for destroying less spatio-temporal patterns, when creating
the surrogates.

For gamma processes, the situation is reversed. Joint-ISI dithering yields a higher
false negative rate in comparison to the UDR. Again, we explain this by the effective
displacement and the clipped firing rate (see secs. 5.4.2 & 5.4.5). For the UDR, the
clipped firing rate of the surrogates decreases more strongly than for the data itself.
As a result, the p-value spectrum of the UDR is shifted (see it for the independent
data in fig. C.4). Thus, too small p-values are assigned to the patterns’ signatures.
Consequently, to identify a pattern as significant, fewer occurrences are necessary, and
the false negative rate is small.

For the joint-ISI dithering this is not the case, where there is no shift in the p-value
spectrum (see fig. C.4). Since the clipped firing rate of the joint-ISI dithered spike trains
follow closely that of the artificial spike trains (see sec. 5.4.5). Therefore, the case that
of not destroyed spatio-temporal patterns is more relevant, which can happen if spikes
stay in the same bin creating the surrogates (see sec. 5.4.2). However, this can also be
due to a poor estimate of the joint-ISI distribution if there are only a few spikes (see
secs. 2.3 & 5.3). Correspondingly we observe that, on average, the false negative rate is
higher than all other surrogates (see 6.6).

Finally, it is worth noting that in all considered cases, the average false negative
rate is below 5%. hus, it seems appropriate to evaluate the three surrogate methods
with higher weighting concerning false positives, which have larger values than the false
negatives (see sec. 6.1.2).

One still may ask the question: To what extent does the presence of true positives
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Figure 6.6: The upper figure shows the rate of false negatives that results from SPADE
analyzing a set of 20 1 s long spike trains with injected spatio-temporal patterns. We
consider PPR spike trains (τr = 2.5 ms, left panel) and gamma spike trains (γ = 2,
right panel). The required p-value spectrum was calculated with the ground truth null
hypothesis (GT, blue), or using surrogate methods: uniform dithering (UD, orange),
UDR (green), and joint-ISI dithering (JISI, red). The x-axis shows the firing rate in Hz,
and the y-axis shows the false negative rate as defined above. The average of the false
negative rates over firing rates is shown s in dashed lines. The lower figure shows the
same averages, but additionally, the standard errors of the mean as error bars.
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impact the number of false positives? To investigate this, we have also evaluated the false
positives for these data sets, which we show in figure 6.7. We find that there is not much
difference between the false positive rates of these data sets with patterns and those of
the independent spike train data sets (see figs. 6.1 & 6.2). The only observed differences
are higher false positive rates for uniform dithering analyzing PPR spike trains at firing
rates of 30 and 40 Hz. We conclude that the maximum firing rate up to which uniform
dithering is reliable regarding false positives may be lower than the 40 Hz given in the
previous section.

Many statistical quantities are used that combine false positives and false negatives.
We utilize the false discovery rate here, i.e., the ratio of false positives over the patterns
identified as significant. Thus, for any pattern classified as significant, the probability
can be indicated that it is a false positive. The results for this, we show in figure 6.8.
For most values, the false discovery rate is very similar to the false positive rate, even
if the scale is different (the false discovery rate cannot be higher than 1). In order to
obtain more relevant information from combined statistics’ measures, we would need to
analyze data sets with further inserted spatio-temporal patterns.

As a summary of our analysis of false positives, we can firstly state that the choice of
a suitable surrogate method depends on the firing rate. The uniform dithering method
performs well for low firing rates concerning either false positives or false negatives.
However, for higher firing rates, the number of false positives increases dramatically. As
a consequence, we do not recommend uniform dithering for spike train data that are
either regular or have a refractory period to avoid possible sources of false positives.

In the comparison between UDR and joint-ISI dithering, there are few differences in
terms of false positives and false negatives. The results of false positives are very similar
except for an increase above a firing rate of 90 Hz for UDR used to analyze gamma
spike trains. Except for this case, the false positive rate is well below the confidence
level for both methods. As far as false negatives are concerned, UDR shows generally
better results for false negatives. Only above 70 Hz in the analysis of PPR spike trains
the results are slightly higher. Therefore, we recommend using uniform dithering with
refractoriness in the analysis with SPADE of spike train data with firing rates below 70
Hz, which are regular or have a refractory period. As a reference point, we recommend
choosing the neuron with the highest firing rate. The joint-ISI dithering can be used
very well over the complete range of firing rates. For high firing rates, it is the only
choice we recommend, robust in both false positives and false negatives.

74



Figure 6.7: The figure shows the rate of false positives that results from SPADE an-
alyzing the data sets with the inserted true positives. In the left and right panel, we
show PPR spike trains (τr = 2.5 ms) and gamma spike trains (γ = 2), respectively. The
p-value spectrum was calculated using independent spike trains (GT, blue) and surro-
gates created with uniform dithering (UD, orange), uniform dithering with refractoriness
(UDR, green) and joint-ISI dithering (JISI, red). The x-axis shows the firing rate in Hz,
and the y-axis shows the false positive rate, i.e., the number of false positives averaged
over the realizations of the data set. The dashed lines represent for each surrogate
method the average over firing rates. The grey dashed line shows the confidence level.
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Figure 6.8: The figure shows the false discovery rate that results from SPADE ana-
lyzing the data sets with the inserted true positives, i.e., the ratio of the number of
false positives over the number of patterns detected as positives. In the left and right
panel, we show PPR spike trains (τr = 2.5 ms) and gamma spike trains (γ = 2), re-
spectively. TWe calculate the p-value spectrum using independent spike trains (GT,
blue) and surrogates created with uniform dithering (UD, orange), uniform dithering
with refractoriness (UDR, green) and joint-ISI dithering (JISI, red). The x-axis shows
the firing rate in Hz, and the y-axis shows the false discovery rate. The dashed lines
represent for each surrogate method the average over firing rates.
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Chapter 7

Conclusion

7.1 Discussion

This thesis aimed to compare different dithering methods concerning the creation of a
statistically robust null hypothesis for the detection of significant spatio-temporal spike
patterns. Therefore, we not only provided an introduction to the world of neurons and
spikes but also summarized the basics of statistical point processes used to describe spike
trains. We have decided to focus on Poisson processes with refractoriness (PPR) and
gamma processes, allowing us to include an absolute or relative refractory period. Thus,
they represent two ways to model regular spike trains1. It is worth noting that we have
extended the analysis of PPR spike trains, carried out by Deger et al. (2012), also to
include the basics of non-stationary PPR spike trains. By analyzing the characteristics
of electrophysiological recordings, exemplified by the reach-to-grasp data set, we ensured
that it is legitimate to restrict ourselves to regular spike trains. However, in this thesis,
we did not consider the property of recorded neurons that firing rates change across
neurons and with time but limit ourselves to firing rates that are stationary and the
same for all neurons.

By introducing SPADE as a method for spatio-temporal pattern detection, we showed
how patterns are obtained from a spike train data set, and illustrated how they are tested
for significance. The null hypothesis is that all spatio-temporal patterns are only a by-
product of the statistical properties of mutually independent spike trains. In order to
approximate these independent spike trains, SPADE uses surrogates. The surrogate
method should, therefore, ensure independence between the spike trains while maintain-
ing the statistical properties. These surrogates are then used to generate a distribution
of p-values called the p-value spectrum. With this objective, we have compared three
dithering methods. These are uniform dithering (a standard approach), uniform dither-
ing with refractoriness (UDR - a newly introduced adaptation of the uniform dithering),
and joint-ISI dithering (approach explicitly seeking to preserve the inter-spike interval
(ISI) distribution). Note that we defined the joint-ISI dithering somewhat differently

1Thereby, we have limited ourselves to gamma processes with shape factors γ > 1.
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than Gerstein (2004) and Louis et al. (2010b) and discussed the reasons for this in
detail.

We have identified the interplay between the method of time discretization (clipping)
and the surrogates as a sticking point in the use of surrogate methods within SPADE.
Clipping, the first step before applying the pattern mining algorithm, is an essential
component of SPADE. We pointed out that the drifting apart between the firing rate
of clipped spike trains and that of clipped surrogate spike trains is the primary source
of the false positives that result from uniform dithering. For this dithering version, we
presented the clipped firing analytically and numerically. In doing so, we have observed
that the clipped firing rate decreases drastically in the case of high underlying firing rates.

Also, for the UDR and joint-ISI, we have investigated this numerically. As a result,
we observed that the UDR is very robust with respect to the effect of clipping when
analyzing PPR spike trains, but behaves similar to the uniform dithering when analyzing
gamma spike trains. However, the joint-ISI dithering shows only small variations in firing
rate after clipping regardless of the type of spike train. We also showed the clipped
spike count that emerges from analyzing the reach-to-grasp data set with the surrogate
techniques. Thereby, we found no substantial differences between the UDR and the joint-
ISI dithering. For the uniform dithering, however, we could see a marked reduction of
the clipped spike count.

Moreover, we studied the autocorrelation of the surrogate spike trains and their
ISI distribution. We showed that both measures are not conserved within a uniform
dithered surrogate spike train. In contrast, UDR and joint-ISI dithering preserve the
autocorrelation and ISI distribution of PPR spike trains approximately. When applied
to gamma spike trains, only joint-ISI dithering is able to preserve these measures.

Additionally, we studied the differences of the underlying spike trains to their respec-
tive surrogates in terms of cross-correlation and the number of spikes that did not change
their position in bins during the transition to the surrogate. We observed first that for
all three dithering methods, the number of spikes in equal bins in the surrogates and
the original spike trains is higher than when comparing two independent spike trains. In
principle, this can lead to patterns not being sufficiently destroyed. Particularly marked
is this rate of spikes in the same bins when applying UDR to gamma spike trains.

Moreover, we could shed some light on the extent to which serial ISI correlations
emerge in the surrogate spike trains. While uniform dithering causes negative serial
correlations, joint-ISI dithering causes positive serial correlations, but for the UDR,
it depends on the spike train model. For PPR spike trains, it shows positive serial
correlation, whereas, for gamma spike trains, we observe negative serial correlations.

After this comparison of the surrogate methods in terms of single spike train statis-
tics, we designed and generated a test data set. As models for the generation of spike
trains, we decided to use PPR as well as Gamma spike trains. The artificial data sets
comprised both independent data and spike trains with injected patterns. On these
data sets, we applied then SPADE with each of the surrogate methods. In this way, we
have evaluated how far the null hypotheses generated by the three different surrogate
techniques were adequate in terms of false positives and false negatives.
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For the case of independent spike train data, we were able to provide not only an
estimate of the p-value spectrum but also the ground truth as a reference for the compar-
ison. This ground truth resulted from the known, underlying statistics of the generated
PPR and gamma spike trains. Regarding uniform dithering, we observed the already
predicted firing rate dependent increase of false positives. For the other two methods,
no significant difference to the ground truth could be detected, except for the analysis of
gamma spike trains using UDR at high firing rates. There, we see a firing rate-dependent
increase in false positives, but not as strong as in the case of uniform dithering.

In the second step of the data sets with inserted spatio-temporal patterns, it was
additionally possible to evaluate the surrogate methods regarding false negatives. Here,
we observed that uniform dithering scored better than the other methods. However, this
could not outweigh the poor performance on the false positives. The false negative rate
resulting from UDR or joint-ISI dithering was generally below 5 %. The only deviation
we found was in the analysis of PPR spike trains using UDR, where we recognized a
slight increase of false negatives for higher firing rates.

Louis et al. (2010b) have already compared uniform dithering and joint-ISI dithering
(and other methods). In the test case carried out there, the same tendencies were visible
that there are more false positives for uniform dithering and more false negatives for
joint-ISI dithering. However, the vast increase of false positives in uniform dithering,
observed in this thesis, could not be observed by Louis et al. (2010b) using a different way
to discretize time. Indeed, this increase in false positives is a clipping specific problem.

We concluded that we recommend using uniform dithering with refractoriness for
spike train data sets where the highest firing rate is 70 Hz maximum. However, if a
data set contains neurons with higher firing rates, we recommend applying the joint-ISI
dithering.

The results and the procedure presented in this thesis yield a recommendation on
which surrogate method to employ within SPADE. Nonetheless, we also would like to
mention the relevant aspects that we have not covered. First of all, spike trains in
recorded data sets have non-stationary firing rate profiles and vary strongly across neu-
rons. We could not analyze this within the scope of this thesis, but a logical next step
includes expanding our evaluations to these cases. For this purpose, we already started
analyzing independent data with firing rate profiles corresponding to those of the reach-
to-grasp data set. This analysis has not yet concluded, even though a few preliminary
results are already available.

In the analysis of non-stationary spike train data, another issue would be whether the
dithering methods should make use of operational time (see sec. 2.4.3.1), as was done in
Louis et al. (2010b). The use of operational time has advantages and disadvantages. In
the test case discussed in that paper, the methods can achieve even fewer false positives
by performing the dithering in operational time. Crucial for us, not to use this, are the
uncertainties associated with the estimation of the firing rate (see sec. 2.3), especially
since we do not necessarily want to make assumptions about how the firing rate changes
over trials.

Another important aspect not mentioned is that there are also surrogate methods
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that do not rely on dithering. Indeed, Louis et al. (2010a) provide a comprehensive
overview of surrogate methods. For example, it would be possible to create surrogates
of already discretized spike trains and thus to avoid the problems caused by clipping. A
currently discussed approach to do so is called bin shuffling, where the bin contents are
shuffled within a sliding window.

It would also be possible not to displace each spike individually, but to move the
entire spike train on a trial-by-trial basis (Louis et al. (2010a,b)). This approach is
straightforward and, in any case, maintains the spike train’s statistical properties. It
remains to analyze the extent to which creating these surrogates destroys the existing
patterns, and if the change in firing rate correlations would have an impact. In terms
of coincidence detection, however, Louis et al. (2010a) have shown that this shifting
approach results in a low number of false negatives but a high number of false positives.
Whether this would also be the case when using SPADE can hardly be predicted.

Recently there have been some discussions on the subject of multiple testing that
we discussed in sec. 6.1.1. The idea is to calculate the number of tests differently. As
a consequence, the false positive rate based on the ground truth null hypothesis should
approach closer to the confidence level.

In this thesis, we used Poisson processes with refractoriness and gamma processes as
spike train models. These are not the only renewal processes used to model spike trains.
Also widely used are the Log-Normal processes and the Inverse Gaussian processes (van
Vreeswijk (2010)), which are somewhat more complex than those presented here. Never-
theless, we think that the extension to non-stationary firing rates is a more decisive issue,
given that the underlying research question is to evaluate electrophysiological data.

Torre et al. (2016) already examined the reach-to-grasp data for zero-lag patterns
with an earlier version of SPADE. Therefore, it is only natural to ask whether our results
impact these analyses. However, this paper used a different mining algorithm (Torre
et al. (2016)), which makes it difficult to predict if there is any impact. This mining
algorithm was not bin-centered but spike-centered, so the spike count was not reduced
by clipping. Unfortunately, this approach is feasible only for the case of synchronous
patterns.

Nonetheless, we have already started to analyze the reach-to-grasp data set with the
newest version of SPADE using different surrogate techniques to see whether different
results arise. These analyses should not only detect spatio-temporal patterns and make
it possible to relate these patterns to different behavioral contexts. Indeed, this is the
ultimate purpose of the development of SPADE.

In this development, there had already been the incorporation of time delays (Quaglio
et al. (2017)) and of a corresponding third dimension p-value spectrum (Stella et al.
(2019)). With the study of this master thesis, the entire methodological work shall now
lead to more substantiated results of the analysis of experimental records.
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7.2 Implementation

We added some functions to the open-source Python package elephant during the work
on this master’s thesis. First, these are the functions for generating stationary and
non-stationary Poisson processes with refractoriness. Secondly, we added the uniform
dithering with refractoriness as a possible adaptation to the uniform dithering function.
Finally, the joint-ISI dithering was newly implemented, roughly following the pseudocode
in Louis et al. (2010a). Additionally, we optimized the implementation of SPADE for
run time. Here we show an example script using these functions.

1 import elephant.spike_train_generation as gen

2 import elephant.spike_train_surrogates as surr

3 from elephant.spade import spade

4 import quantities as pq # Library to use units

5 import neo # Library to work with electrophysiological data

6

7 refractory_period = 2.5 * pq.ms

8 # Generation of stationary PPR spike train

9 stationary_spiketrain = gen.homogeneous_poisson_process(

10 rate =80. * pq.Hz, t_start =0. * pq.s, t_stop =1. * pq.s,

11 refractory_period=refractory_period)

12

13 # Generation of non -stationary PPR spike train

14 # with a step -function as rate profile

15 firing_rate_profile = neo.AnalogSignal(

16 signal =[10., 80.], units=pq.Hz, sampling_period =0.5* pq.s)

17 non_stationary_spiketrain = gen.inhomogeneous_poisson_process(

18 rate=firing_rate_profile , refractory_period=refractory_period)

19

20 # Creation of surrogates using the uniform dithering with refractoriness

21 # and using the joint -ISI dithering.

22 dither_parameter = 15. * pq.ms

23 for spiketrain in (stationary_spiketrain , non_stationary_spiketrain):

24 surrogate_udr = surr.dither_spikes(

25 spiketrain=spiketrain , dither=dither_parameter ,

26 refractory_period=refractory_period)[0]

27 surrogate_jisi = surr.JointISI(

28 spiketrain=spiketrain , dither=dither_parameter).dithering ()[0]

29

30 # Application of SPADE

31 spade_results = spade(

32 spiketrains =[ stationary_spiketrain , non_stationary_spiketrain],

33 binsize =3*pq.ms , winlen=5, min_spikes =2, min_occ =10, min_neu=2,

34 n_surr =5000, alpha =0.05, stat_corr=’holm’, spectrum=’3d#’,

35 surr_method=’joint_isi_dithering ’, psr_param =[1,3 ,2])

Example usage of the Python functions

For the sake of reproducibility, we show all program code needed to recreate the
results of this thesis in the GitHub repository:

https://github.com/INM-6/dithering methods master thesis.
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Appendix A

Calculations for Point Processes

A.1 Equivalence of firing rate definitions

We show here that the two definitions of the firing rate in equations (1.1) and (2.5) are
equivalent. We start with the first one:

λ(t) = lim
ε→0

1

ε
Prob(spike in [t, t+ ε]) for t ≥ 0, ε > 0.

If we only look at the probability term, we can transform it as:

Prob(spike in [t, t+ ε]) = 1− Prob(no spike in [t, t+ ε])

= 1−
∞∏
i=1

Prob(ti not in [t, t+ ε])

= 1−
∞∏
i=1

(1− 〈Θ(ti − t)Θ(t+ ε− ti)〉s +O(ε2))

= 1−
∞∏
i=1

(1− 〈δ(ti − t)〉sε+O(ε2))

=
∞∑
i=1

〈δ(ti − t)〉sε+O(ε2)

In the third line, we have used that the probability of having a spike in an interval
[t, t+ ε] is up to terms of order O(ε2) equal to the expected number of spikes in [t, t+ ε].

Plugging this into the upper firing rate equation yields:
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λ(t) = lim
ε→0

1

ε
Prob(spike in [t, t+ ε])

= lim
ε→0

1

ε

( ∞∑
i=1

〈δ(ti − t)〉sε+O(ε2)

)

=
∞∑
i=1

〈δ(ti − t)〉s
(2.4)
= 〈s(t)〉s

Thus, we have shown that both definitions are equivalent. Note that all steps per-
formed here can also be done in the other direction.

A.2 Renewal processes

We show here the relationship between the firing rate, the distribution of the first spike
and the positive-τconditional firing rate:

λ(t)
(2.5,2.4)

=

〈 ∞∑
i=1

δ(t− ti)

〉
s

(A.1)

(2.3)
=

∞∑
i=1

ˆ i∏
j=0

dtjρj(tj |tj−1, . . . , t1)δ(t− ti)

(2.30)
=

∞∑
i=1

ˆ
dti(ρ1 ~ p~ · · ·~ p︸ ︷︷ ︸

(i−1) times

)(ti)δ(t− ti)

= ρ1(t) +

(
ρ1 ~

∞∑
i=2

p(i−1)~

)
(t)

(2.33)
= ρ1(t) +

(
ρ1 ~ λ+

c

)
(t)

From the second to the third line, we could integrate out over all tj with j > i.

Further, we analyze the relationship between the autocorrelation function and the
conditional firing rate:
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ψ(t, t′) =

〈 ∞∑
i=1

∞∑
j=1

δ(t− ti)δ(t′ − tj)

〉
s

(A.2)

=

〈 ∞∑
i=1

∞∑
j=i+1

δ(t− ti)δ(t′ − tj)

〉
s

+

〈 ∞∑
i=1

δ(t− ti)δ(t′ − ti)

〉
s

+

〈 ∞∑
i=1

i−1∑
j=1

δ(t− ti)δ(t′ − tj)

〉
s

.

Calculating the different summands by its own and using the symmetry between sum-
mand 1 and 3, only the following two terms need to be considered.

〈 ∞∑
i=0

∞∑
j=i+1

δ(t− ti)δ(t′ − tj)

〉
s

(A.3)

(2.30)
=

∞∑
i=1

∞∑
j=i+1

ˆ i∏
k=0

dtkρk(tk|tk−1, . . . , t1)×

×
ˆ j∏

l=i+1

dtjρl(tl|tl−1, . . . , l1)δ(t− ti)δ(t′ − tj)

(2.29)
=

∞∑
i=1

∞∑
j=i+1

ˆ
dti(ρ1 ~ p~ · · ·~ p︸ ︷︷ ︸

(i−1) times

)(ti)×

×
ˆ
dtj(p~ · · ·~ p︸ ︷︷ ︸

(j−i) times

)(tj − ti)δ(t− ti)δ(t′ − tj)

=

∞∑
i=1

∞∑
j=i+1

(ρ1 ~ p(i−1)~)(t)p(j−i)~(t′ − t)

(2.33,2.35)
= λ(t)

∞∑
k=1

p(k)~(t′ − t)

〈 ∞∑
i=0

δ(t− ti)δ(t′ − ti)

〉
= λ(t)δ(t− t′) (A.4)
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This can be summarized by using the conditional firing rate (see eq. (2.33)).

ψ(t, t′) =λ(t)
∞∑
k=1

p(k)~(t′ − t) + λ(t)δ(t− t′) + λ(t′)
∞∑
k=1

p(k)~(t− t′) (A.5)

(2.33)
= λ(t)δ(t− t′) + λ(t)λ+

c (t′ − t) + λ(t′)λ+
c (t− t′)

(2.36)
= λδ(t− t′) + λλ+

c (t′ − t) + λλ+
c (t− t′) (A.6)

(2.34)
= λδ(t− t′) + λλc(|t− t′|) (A.7)

The fact that the position of the first spike follows eq. 2.36 yields a close formula
for the p.d.f of the first spike. To make it more explicit that eq. 2.36 is only defined for
t ≥ 0, we replace on the left side λ→ λΘ(t). Therefore, it follows that:

(ρ1 ~ λc)(t) + ρ1(t) = λΘ(t).

Now convolving this equation with p(τ) yield:

⇒ (p~ ρ1 ~ λc)(t) + (p~ ρ1)(t)︸ ︷︷ ︸
2.33
= (ρ1~λc)(t)

= λ

ˆ t

0
dτ p(τ),

⇔ λΘ(t)− ρ1(t) = λ

ˆ t

0
dτ p(τ). (A.8)

A.3 Markov processes

To calculate the ISI distribution for Markov processes, it is necessary to plug eq. ( 2.41)
into eq. (2.16).

f(τ) = lim
T→∞

c1(T )

〈 ∞∑
i=1

δ(τ − (ti+1 − ti))Θ(T − ti+1)

〉
s

The second term becomes
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〈 ∞∑
i=1

δ(τ − (ti+1 − ti))Θ(T − ti+1)

〉
s

=

∞∑
i=1

ˆ i+1∏
j=1

dtj

i+1∏
j=2

p(tj |tj−1)

 ρj(t1)δ(τ − (ti+1 − ti))Θ(T − ti+1)

(2.48)
=

∞∑
i=1

ˆ ∞
0

dti

ˆ T

0
dti+1ρi(ti)p(ti+1|ti)δ(τ − (ti+1 − ti))

(2.49)
=

ˆ ∞
0

dt λ(t)

ˆ T

0
dt′p(t′|t)δ(τ − (t′ − t))

=

ˆ T

τ
dt′ λ(t′ − τ)p(t′|t′ − τ)

=

ˆ T−τ

0
dt λ(t)p(t+ τ |t)

The normalization factor is

c1(T ) =
1

E(N(T ))− 〈Θ(T − t1)〉s

=
1´ T

0 dt λ(t)−
´ T

0 dt ρ1(t)
.

The ISI distribution is thus expressed as

f(τ) = lim
T→∞

´ T−τ
0 dt λ(t)p(t+ τ |t)´ T

0 dt λ(t)−
´ T

0 dt ρ1(t)

= lim
T→∞

´ T
0 dt λ(t)p(t+ τ |t)´ T

0 dt λ(t)
.

Following the same steps the Joint-ISI distribution becomes

f(τ, τ ′) = lim
T→∞

´ T−(τ+τ ′)
0 dt λ(t)p(t+ (τ + τ ′)|t+ τ)p(t+ τ |t)´ T

0 dt λ(t) − 〈Θ(T − t2)〉s − 〈Θ(T − t1)〉s

= lim
T→∞

´ T
0 dt λ(t)p(t+ (τ + τ ′)|t+ τ)p(t+ τ |t)´ T

0 dt λ(t)
.
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A.4 Poisson process with refractoriness

In order to simplify the expression of the CV 2 for Poisson processes with refractoriness,
we apply a variable transformation.

CV 2 = 2

〈
|τ − τ ′|
τ + τ ′

〉
τ,τ ′

(2.32)
=

ˆ ∞
0

dτ

ˆ ∞
0

dτ ′p(τ)p(τ ′)
|τ − τ ′|
τ + τ ′

(A.9)

= 2(λ̃)2

ˆ ∞
τr

dτ

ˆ ∞
τr

dτ ′ exp(−λ̃(τ + τ ′ − 2τr))
|τ − τ ′|
τ + τ ′

= (λ̃)2

ˆ ∞
2τr

dt

ˆ t−2τr

2τr−t
dδ exp(−λ̃(t− 2τr))

|δ|
t

= 2(λ̃)2

ˆ ∞
2τr

dt

ˆ t−2τr

0
dδ exp(−λ̃(t− 2τr))

δ

t

= (λ̃)2

ˆ ∞
2τr

dt exp(−λ̃(t− 2τr))
(t− 2τr)

2

t
(A.10)

To analyze the limit of the CV 2 for small refractory periods τr, we apply a Taylor
expansion up to linear order.

CV 2|τr=0
= λ

ˆ ∞
0

dt λ exp(−λt) t = 1

d

dτr
CV 2

∣∣∣∣
τr=0

= λ

ˆ ∞
0

dt λ exp(-λt)(−λ2t2 + 4λt− 4) = −2λ

⇒ CV 2 = 1− 2λτr +O
(
(τr)

2
)

(A.11)

A.5 Clipped firing rates

Here, we summarize the derivations of the clipped firing rates omitting the trivial calcu-
lations for the Poisson Process (eq. 2.75) and for the PPR if b ≤ τr. For the PPR holds
if b ≥ τr:

λclip
PPR =

1

b

ˆ b

0
dtρ1(t)

=
1

b
λτr +

1

b

ˆ b

τr

dt λ exp(−λ̃ · (t− τr))

=
1

b
λτr +

1

b

λ

λ̃
(1− exp(−λ̃(b− τr)))

2.61
= λ

τr
b

exp(−λ̃(b− τr)) +
1

b
(1− exp(−λ̃(b− τr))) (A.12)
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For the gamma processes we get using the incomplete gamma functions Γ(γ, x) =´∞
x ds sγ−1e−s and Γ̄(γ, x) =

´ x
0 ds s

γ−1e−s:

λclip
γ =

1

b

ˆ b

0
dtργ1(t)

=
1

b

ˆ b

0
dt λ

Γ(γ, γλt1)

Γ(γ)

=
1

γb

1

Γ(γ)

ˆ γλb

0
ds Γ(γ, s)

p.I.
=

1

γb

1

Γ(γ)

(
γλb · Γ(γ, γλb) +

ˆ γλb

0
ds sγe−s

)
= λ

Γ(γ, γλb)

Γ(γ)
+

1

b

Γ̄(γ + 1, γλb)

Γ(γ + 1)
(A.13)
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Appendix B

Calculations for Surrogate
Methods

B.1 Effects of uniform dithering on the autocorrelation

The autocorrelation of an uniformly dithered surrogate spike train (with 〈〉δi denoting
the average according to the increment added to spike i):

ψδ(t, t
′) :=

∞∑
i=1

∞∑
j=1

〈〈〈δ(t− (ti + δi))δ(t
′ − (tj + δj)〉s〉δi〉δj

It is useful to split this sum up such that the average when i = j is separated.

ψδ(t, t
′) =

∞∑
i=1

〈〈δ(t− (ti + δi))δ(t
′ − (ti + δi)〉s〉δi

+

∞∑
i=1

∞∑
j=1 j 6=i

〈〈〈δ(t− (ti + δi))δ(t
′ − (tj + δj)〉s〉δi〉δj

We show that the first summand only depends on the firing rate λ(t).
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∞∑
i=1

〈〈δ(t− (ti + δi))δ(t
′ − (ti + δi)〉s〉δi

=
∞∑
i=1

〈〈δ(t− (ti + δi))〉s〉δiδ(t− t
′)

(2.4)
= 〈〈s(t− δ)〉s〉δδ(t− t′)

(2.5)
= 〈λ(t− δ)〉δδ(t− t′)

(5.2)
= λδ(t)δ(t− t′)

While the second summand involves the autocorrelation function of the original pro-
cess ψ(t, t′).

∞∑
i=1

∞∑
j=1 j 6=i

〈〈〈δ(t− (ti + δi))δ(t
′ − (tj + δj)〉s〉δi〉δj

=

∞∑
i=1

∞∑
j=1

〈〈〈δ(t− (ti + δ))δ(t′ − (tj + δ′)〉s〉δ〉δ′

−
∞∑
i=1

〈〈〈δ(t− (ti + δ))δ(t′ − (ti + δ′)〉s〉δ〉δ′

(2.4)
= 〈〈〈s(t− δ))s(t′ − δ′)〉s〉δ〉δ′

−
ˆ
ds〈〈〈δ(s− ti)δ(t− (s+ δ))δ(t′ − (s+ δ′))〉s〉δ〉δ′

(2.7,2.5)
= 〈〈ψ(t− δ, t′ − δ′)〉δ〉δ′

−
ˆ
ds〈〈λ(s)δ(t− (s+ δ))δ(t′ − (s+ δ′))〉δ〉δ′

(5.1)
=

ˆ
dδ

ˆ
dδ′u(δ)u(δ′)ψ(t− δ, t′ − δ′)

−
ˆ
ds

ˆ
dδ

ˆ
dδ′λ(s)u(δ)u(δ′)δ(t− (s+ δ))δ(t′ − (s+ δ′))

=

ˆ
ds

ˆ
ds′u(t− s)u(t′ − s′)(ψ(s, s′)− λ(s)δ(s− s′)︸ ︷︷ ︸

:=φ(s,s′)

)

ψδ(t, t
′) = λδ(t)δ(t− t′) +

ˆ
ds

ˆ
ds′u(t− s)u(t′ − s′)φ(s, s′)

Thus, it is possible to calculate ψδ(t) by using λ(t) and ψ(t, t′).

92



B.2 Effects of uniform dithering on renewal processes

As we have seen in section 5.1, the convolution of the conditional firing rate with the
p.d.f. of the uniform dithering become influential.

In the following we make extensively use of integral of the incomplete gamma func-
tion:

ˆ b

a
dx xn−1Γ̄(γ, x)

p.I.
=

1

n
(xnΓ̄(γ, x)− Γ̄(γ + n, x))

∣∣∣∣x=b

x=a

.

For gamma spike trains this is done within the following steps:

(λ+
c ~ u)(τ)

=

∞∑
n=1

1

2∆

ˆ ∆

−∆
dδ γλ

(γλ(τ − δ))nγ−1

Γ(nγ)
exp(−γλ(τ − δ))Θ(τ − δ)

=
1

2∆

∞∑
n=1

ˆ max(0,γλ(τ+∆))

max(0,γλ(τ−∆))
dσ
σnγ−1

Γ(nγ)
exp(−σ)

=
1

2∆

∞∑
n=1

1

Γ(nγ)

(
Γ̄(nγ, γλ(τ + ∆))Θ(τ + ∆)

−Γ̄(nγ, γλ(τ −∆))Θ(τ −∆)
)

(λc ~ u)(0) =
1

2∆

∞∑
n=1

Γ̄(nγ, γλ∆)

Γ(nγ)
=

1

2
(λc ~ u)(0)
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(λ+
c ~ u~ u)(τ)

=
1

(2∆)2

∞∑
n=1

1

Γ(nγ)

ˆ ∆

−∆
dδ

(
Γ̄(nγ, γλ(τ − δ + ∆))Θ(τ − δ + ∆)

− Γ̄(nγ, γλ(τ − δ −∆))Θ(τ − δ −∆)

)
=

1

(2∆)2

∞∑
n=1

1

Γ(nγ)

[(
(τ + 2∆)Γ̄(nγ, γλ(τ + 2∆))

− 1

γλ
Γ̄(nγ + 1, γλ(τ + 2∆))

)
Θ(τ + 2∆)

− 2

(
τ Γ̄(nγ, γλτ)− 1

γλ
Γ̄(nγ + 1, γλτ)

)
Θ(τ)

+

(
(τ − 2∆)Γ̄(nγ, γλ(τ − 2∆))

− 1

γλ
Γ̄(nγ + 1, γλ(τ − 2∆))

)
Θ(τ − 2∆)

]

(λ+
c ~ u~ u)(0)

=
1

(2∆)2

∞∑
n=1

1

Γ(nγ)

(
2∆Γ̄(nγ, 2γλ∆)− 1

γλ
Γ̄(nγ + 1, 2γλ∆)

)

=
1

(2∆)2

∞∑
n=1

(
2∆

Γ̄(nγ, 2γλ∆)

Γ(nγ)
− n

λ

Γ̄(nγ + 1, 2γλ∆)

Γ(nγ + 1)

)
=

1

2
(λc ~ u~ u)(0)

For the PPR spike trains the calculations are very similar:
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(λ+
c ~ u)(τ) =

∞∑
n=1

1

2∆

ˆ ∆

−∆
dδ

(
λ̃

(λ̃(τ − δ − nτr))n−1

Γ(n)
×

× exp(−λ̃(τ − δ − nτr))Θ(τ − δ − nτr)
)

=
1

2∆

∞∑
n=1

ˆ max(0,λ̃(τ−nτr+∆))

max(0,λ̃(τ−nτr−∆))
dσ
σn−1

Γ(n)
exp(−σ)

=
1

2∆

∞∑
n=1

1

Γ(n)

(
Γ̄(n, λ̃(τ − nτr + ∆))Θ(τ − nτr + ∆)

− Γ̄(n, λ̃(τ − nτr −∆))Θ(τ − nτr −∆)

)

(λ+
c ~ u)(0) =

1

2∆

b ∆
τr
c∑

n=1

1

Γ(n)
Γ̄(n, λ̃(∆− nτr)) =

1

2
(λc ~ u)(0)

(λ+
c ~ u~ u)(τ)

=
1

(2∆)2

∞∑
n=1

1

Γ(n)
×

×
ˆ ∆

−∆
dδ

(
Γ̄(n, λ̃(τ − nτr − δ + ∆))Θ(τ − nτr − δ + ∆)

− Γ̄(n, λ̃(τ − nτr − δ −∆))Θ(τ − nτr − δ −∆)

)
=

1

(2∆)2

∞∑
n=1

1

Γ(n)

[(
(τ − nτr + 2∆)Γ̄(n, λ̃(τ − nτr + 2∆))

− 1

λ̃
Γ̄(n+ 1, λ̃(τ − nτr + 2∆))

)
Θ(τ − nτr + 2∆)

− 2

(
(τ − nτr)Γ̄(n, λ̃(τ − nτr))−

1

λ̃
Γ̄(n+ 1, λ̃(τ − nτr))

)
Θ(τ − nτr)

+

(
(τ − nτr − 2∆)Γ̄(n, λ̃(τ − nτr − 2∆))

− 1

λ̃
Γ̄(n+ 1, λ̃(τ − nτr − 2∆))

)
Θ(τ − nτr − 2∆)

]
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(λ+
c ~ u~ u)(0)

=
1

(2∆)2

b 2∆
τr
c∑

n=1

1

Γ(n)

(
(2∆− nτr)Γ̄(n, λ̃(2∆− nτr))−

1

λ̃
Γ̄(n+ 1, λ̃(2∆− nτr))

)

=
1

(2∆)2

b 2∆
τr
c∑

n=1

(
(2∆− nτr)

Γ̄(n, λ̃(2∆− nτr))
Γ(n)

− n

λ̃

Γ̄(n+ 1, λ̃(2∆− nτr))
Γ(n+ 1)

)

=
1

2
(λc ~ u~ u)(0)

B.3 Clipped firing rate for uniform dithering

How to calculate the clipped firing rate for a renewal process after uniform dithering?
We know how the autocorrelation function looks like after uniform dithering (eq. (5.11)).
Additionally, we have seen before that the autocorrelation function depends only on the
firing rate and the conditional firing rate (eq. (A.2)) and that the conditional firing rate
is linked to the ISI distribution (eq. (2.33)). This relation is invertible:

λ+
c (τ) =

∞∑
i=1

p(i)~(τ)⇔ p(τ) =

∞∑
i=1

(−1)i−1(λ+
c )(i)~(τ) (B.1)

Since λc(τ) is only defined for positive τ , it follows directly that (λ+
c )(i)~(τ) is of

order O(τ i−1). Since we are only interested up to order O(τ2), we can write:

p(τ) = λ+
c (τ)− (λ+

c )(2)~(τ) +O(τ2) for τ > 0.. (B.2)

For this reasoning, it is necessary to assume renewalness of the process also after
uniform dithering, that does not hold effectively, serial correlations appear, but the
results for small τ have shown to fit very closely. How to get now the conditional firing
rate from the autocorrelation after uniform dithering ψδ(t, t

′)? We achieve this by

λ+,δ
c (τ) =

1

λ
ψδ(t, t+ τ) for τ > 0.

And thus:

λ+,δ
c (τ) = (λc ~ u~ u)(τ) for τ > 0.

Expanding this up to order O(τ2) yields:
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λ+,δ
c (τ) = (λc ~ u~ u)(0)︸ ︷︷ ︸

:=λu

+O(τ2) for τ > 0.

This is due to the symmetry of λ̄c. Inserting this into (B.2) yields finally:

pδ(τ) =
(
λu − (λu)2τ +O(τ2)

)
Θ(τ). (B.3)

B.4 Square root on the Joint-ISI distribution

In the papers by Gerstein (2004) and Louis et al. (2010), a square root is applied to
the joint-ISI distribution. The following lines show why these papers use it and when
avoiding it is possible.

The joint-ISI dithering is based on the joint-ISI distribution f(τ, τ ′) (see sec. 5.3).
For simplicity, we do not use the discretized time here; for small bin sizes b the differences
of the results are negligible.

If we now want to dither the spike i, with its forward/backward ISIs τi/τi+1, the new
position will be drawn according to (see eq. 5.19)

u(δ) =
Θ(∆− |δ|)f(τi + δ, τi+1 − δ)´ ∆
−∆ dδ

′ f(τi + δ′, τi+1 − δ′)
.

where θ(x) denotes the Heaviside step function, and ∆ is the maximal displacement of
the dithered spike.

Model calculation

To get a better understanding of the resulting joint-ISI histogram, we analyze here only
the antidiagonal lines D = ISIi+ISIi+1 = const. We assume the underlying distribution
of the joint-ISI probability distribution is Gaussian on this antidiagonal, of mean zero
and finite variance σ2 := σ2(D). The assumption is to have a general ansatz that allows
more analytical calculations than assuming PPR or gamma spike trains. The probability
on the antidiagonal can thus be written as:

p0(t) = cf(D/2 + t,D/2− t) = N (t, 0, σ2). (B.4)

Here c is a normalization constant. Further, we use the notation:

N (x, µ, σ2) :=
exp(− (x−µ)2

2σ2 )
√

2πσ2
.

The distribution after the dithering process would then be p1(s) =
´
p(s|t)p0(t)dt with

p(s|t) =
Θ(∆− |s− t|)p0(s)´
Θ(∆− |s− t|)p0(s)ds

.
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An exact calculation for the transition probability yields:

p(s|t) = 2
Θ(∆− |s− t|)N (s, 0, σ2)

erf( t+∆√
2σ

)− erf( t−∆√
2σ

)
.

Since an exact analytical calculation of p1(s) does not seem to be feasible, we will
consider only the first two conditional moments of p(s|t):

〈s〉(t) =

ˆ
s · p(s|t)ds = −2σ2N (t,∆, σ2)−N (t,−∆, σ2)

erf( t+∆√
2σ

)− erf( t−∆√
2σ

)
,

〈s2〉(t) =

ˆ
s2 · p(s|t)ds

= −2σ2

(
t
N (t,∆, σ2)−N (t,−∆, σ2)

erf( t+∆√
2σ

)− erf( t−∆√
2σ

)

+∆
N (t,∆, σ2) +N (t,−∆, σ2)

erf( t+∆√
2σ

)− erf( t−∆√
2σ

)

)

= t · 〈s〉(t)− 2σ2∆
N (t,∆, σ2) +N (t,−∆, σ2)

erf( t+∆√
2σ

)− erf( t−∆√
2σ

)
.

Averaging over the initial positions yields

〈s〉 =

ˆ
〈s〉(t)p0(t)dt = 0,

since 〈s〉(−t) = −〈s〉(t) and p0(−t) = p0(t). On the other hand, a numerical approxima-
tion is necessary for 〈s2〉.

Simplification of Model calculation

Since 〈s2〉 is not analytically calculable, we make a rough approximation here to achieve
a comprehensible value for it. Thus, the window around the spike at time t to be
dithered to time s: h∆(s − t) = 1

2∆Θ(∆ − |s − t|), shall be changed from a rectangular
to a normal distribution. In other words, h∆ is approximated by its first two cumulants:
h̃∆(s− t) = N (s− t, 0, σ2

∆) with σ2
∆ := ∆2

3 .

The corresponding transition probability is then:

p̃(s|t) =
h̃∆(s− t)p0(s)´
h̃∆(s− t)p0(s)ds

with

h̃∆(s− t)p0(s) = N (s− t, 0, σ2
∆) · N (s, 0, σ2),
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which yields:

p̃(s|t) = N
(
s,

σ2

σ2 + σ2
∆

t,
σ2σ2

∆

σ2 + σ2
∆

)
.

The resulting distribution is

p̃1(s) = N
(
s, 0, σ2·

σ4 + σ2σ2
∆ + σ4

∆

(σ2 + σ2
∆)2

)
. (B.5)

That means that after applying the joint-ISI dithering in this approximated case, we
would still have a Gaussian distribution. In the two boundaries, we get

lim
∆→0

p̃1(s) = lim
∆→∞

p̃1(s) = p0(s).

In this approximation, it is achieved thus that for both small ∆ and large ∆, the resulting
probability density corresponds to the original one - fulfilling the objective.

Effects of the square root

For intermediate window lengths ∆ the variance of the distribution p̃1(s), i.e. the dis-
tribution after one entire joint-ISI dithering run, is unequal to the one of the original
distribution Var(t)p̃1(t) 6= Var(t)p0(t), which is a consequence of equations (B.5) & (B.5).
Explicitly we have:

Var(t)p̃1(t) = σ2·
σ4 + σ2σ2

∆ + σ4
∆

(σ2 + σ2
∆)2

6= σ2 = Var(t)p0(t)

In the paper of 2004, George Gerstein proposed to apply a square root on the deter-
mined joint-ISI histogram. In the paper of Louis et al. 2010, it was argued the reason for
this is a change in the kurtosis of the distribution, i.e., the fourth standardized moment,
but they did not mention that also the variance changes, as we have seen above.

To overcome the change in the kurtosis, they applied a square root onto the joint-ISI
distribution yielding the transition probability:

˜psqrt(s|t) =
h̃∆(s− t)

√
p0(s)´

h̃∆(s− t)
√
p0(s)ds

= N

(
s,

σ2

σ2 + 1
2σ

2
∆

t,
σ2σ2

∆

σ2 + 1
2σ

2
∆

)
.

The distribution after the dithering would follow as:

˜p1,sqrt(s) =

ˆ
˜psqrt(s|t)p0(t)dt.

= N

(
s, 0, σ2 ·

σ4 + σ2σ2
∆ + 1

2σ
4
∆

(σ2 + 1
2σ

2
∆)2

)
.
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We know just compare the variances of the distributions, that are:

Var(t)p̃1(t) := σ2
1 = σ2·

σ4 + σ2σ2
∆ + σ4

∆

(σ2 + σ2
∆)2

,

Var(t) ˜p1,sqrt(t) := σ2
2 = σ2 ·

σ4 + σ2σ2
∆ + 1

2σ
4
∆

(σ2 + 1
2σ

2
∆)2

.

Comparing them to the original variance σ2 yields the result that the first distribution
is narrower than the original one, and the second is broader than the original one,
following:

σ2
1 = σ2·

(
1−

σ2σ2
∆

(σ2 + σ2
∆)2

)
< σ2,

σ2
2 = σ2 ·

(
1 +

1
4σ

4
∆

(σ2 + 1
2σ

2
∆)2

)
> σ2.

For the boundary ∆→ 0, σ2
1 and σ2

2 both tend against σ2. However, in this boundary,
the spikes would not be displaced. It is thus not a useful application of a dithering
method. In the other boundary ∆→∞, σ2

1 goes to σ2, while σ2
2 goes to 2σ2. Thus, in the

limit of long window lengths, if a square root is applied, the distribution becomes broader,
while without this, the distribution after the dithering corresponds to the underlying
original one. To reach this boundary ∆ needs to be chosen such that σ2

∆ = ∆2

3 >> σ2.
Since the broadness of the joint-ISI distribution is, in general depending, on the firing
rate λ, in such a way that σ2 ∝ 1

λ2 , it is difficult to choose a window length ∆ such that
for all firing rates the boundary situation is reached.

Summarizing, we understand now the reason for the change in the variance. Thus,
we increase the window length used in Gerstein (2004) of ∆ = 8 ms to a default value in
our implementation of ∆ = 15 ms (as for the other methods), which reduces the effect
of the resulting distribution getting broader than the initial one.
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Appendix C

Miscellaneous to False Positives
and False Negatives

C.1 Pattern size distribution

Figure C.1: The figure shows the distribution of pattern sizes in the false positives
analyzed in sec. 6.1. On the left and the right side, we show it for PPR spike trains
(τr = 2.5 ms) and gamma (γ = 2) spike trains. The distribution for the ground truth
null hypothesis (GT) is shown in blue, using surrogates by uniform dithering (UD)
in orange, by uniform dithering with refractoriness (UDR) in green, and by joint-ISI
dithering (JISI) in red. The x-axis displays the pattern sizes and the y-axis the density.
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We show here a further aspect of the analysis of independent data carried out in sec.
6.1. In this regard, we present the distribution of pattern sizes in the false positives (fig.
C.1). We observe a clear tendency that false positive patterns contain a low number of
spikes. Primarily, this holds for uniform dithering, where the distribution is built on a
higher number of false positives. For this method, it is also worth mentioning that the
size distribution varies only slightly between the underlying spike train types. Thus, we
can deduce that the distribution of sizes in false positives may be independent of the
spike train type.

C.2 P-value Spectra

In section 6.1, we have already shown the p-value spectra, that were a result of analyzing
a set of PPR spike trains by recreating independent PPR spike trains, i.e., the ground
truth, a by the use of uniform dithering (see fig. 6.3 ). Here, we show further the p-value
spectra that arise using UDR and joint-ISI dithering in figure C.2. These two p-value
spectra are very similar to the one of the ground truth null hypothesis and seem to be
almost identical between each other. The fact that these two methods act very similarly
applied to PPR spike trains also confirms this similarity (see sec. 5.4 ).

The p-value spectra that correspond to independent Gamma spike trains are shown
in the figures C.3 & C.4. Comparing the p-value spectra of the ground truth between
PPR (see fig. 6.3 ) and Gamma spike trains shows that it can be expected that the
by-chance patterns in PPR spike trains have a bit higher occurrences. Regarding the
surrogate methods, we observe that the uniform dithering also yields a shift to lower
occurrences in the p-value spectrum. The same effect holds but with a smaller shift for
the uniform dithering with refractoriness - only the p-value spectrum of the joint-ISI
dithering fits closely to the ground truth one.

Summarizing, we can state that the p-value spectra in the case of PPR spike trains
are well estimated using UDR or joint-ISI dithering, but in the case of Gamma spike
trains only using joint-ISI dithering.

C.3 Transition from Poisson process to PPR

Here, we show that a Poisson process with refractoriness (PPR) results from a Poisson
process deleting all spikes that have an interval to its preceding spike smaller than
the refractory period τr. Given the Poisson spike train has the firing rate λ̃, the ISI
distribution is:

p(τ) = λ̃ exp(−λ̃τ)Θ(τ).

Using the fact that the Poisson process is memoryless (see sec. 2.4.3.1), the ISI-
distribution of the process that results from deleting the spikes which are too close to
its predecessors yield the ISI-distribution:
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pr(τ) ∝ p(τ)Θ(τ > τr) = λ̃ exp(−λ̃τ)Θ(τ − τr).

The missing normalization factor is exp(λ̃τr). Thus, it results in:

pr(τ) = λ̃ exp(−λ̃(τ − τr))Θ(τ − τr),

which is the known ISI-distribution of the PPR process (see sec. 2.4.3.2).
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Figure C.2: The figure shows the p-value spectrum corresponding to 20 independently
generated PPR (τr = 2.5 ms) spike trains of 1 s that were dithered by uniform dithering
with refractoriness (upper panel) or with joint-ISI dithering (lower panel). In both cases,
it is an average over the 100 data sets used to analyze the false positives of this specific
firing rate. The three dimensions of the p-value spectrum are shown as such that every
size has one subpanel. On the x-axis are the occurrences and on the y-axis the durations
in bins. We show the p-values according to the logarithmic colormap on the right side.
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Figure C.3: The figure shows the p-value spectrum corresponding to 20 independently
generated gamma (γ = 2) spike trains of 1 s (upper panel) and to uniformly dithered
spike trains (lower panel). In both cases, it is an average over the 100 data sets used
to analyze the false positives of this specific firing rate. The three dimensions of the
p-value spectrum are shown as such that every size has one subpanel. On the x-axis are
the occurrences and on the y-axis the durations in bins. We show the p-values according
to the logarithmic colormap on the right side.
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Figure C.4: The figure shows the p-value spectrum corresponding to 20 independently
generated gamma (γ = 2) spike trains of 1 s that were dithered by uniform dithering
with refractoriness (upper panel) or with joint-ISI dithering (lower panel). In both cases,
it is an average over the 100 data sets used to analyze the false positives of this specific
firing rate. The three dimensions of the p-value spectrum are shown as such that every
size has one subpanel. On the x-axis are the occurrences and on the y-axis the durations
in bins. We show the p-values according to the logarithmic colormap on the right side.

106



Bibliography

Abeles, M. (1982). Role of the cortical neuron: integrator or coincidence detector? Israel
journal of medical sciences, 18(1):83–92.

Abeles, M. (1991). Corticonics: Neural Circuits of the Cerebral Cortex. Cambridge
University Press, Cambridge, 1st edition.

Abeles, M. (2010). Spatio-temporal patterns. In Rotter, S. and Grün, S., editors,
Analysis of Parallel Spike Trains. Springer, Berlin.

Asmussen, S. (2003). Applied Probability and Queues, volume 51 of Stochastic Modelling
and Applied Probability. Springer, New York, 2 edition.

Bender, V. A., Bender, K. J., Brasier, D. J., and Feldman, D. E. (2006). Two coincidence
detectors for spike timing-dependent plasticity in somatosensory cortex. J. Neurosci.,
26(16):4166–4177.

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical
and powerful approach to multiple testing. Journal of the Royal Statistical Society.
Series B (Methodological), 57(1):289–300.

Bienenstock, E. (1995). A model of neocortex. Network: Computation in neural systems,
6(2):179–224.

Borgelt, C. (2012). Frequent item set mining. In Wiley Interdisciplinary Reviews
(WIREs): Data Mining and Knowledge Discovery, volume 2, pages 437–456. J. Wiley
& Sons, Chichester, United Kingdom. doi:10.1002/widm.1074.
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