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Abstract

We study the contributions from the connected and disconnected contraction diagrams to the pion-kaon 
scattering amplitude within the framework of SU(4|1) partially-quenched chiral perturbation theory. Com-
bining this with a finite-volume analysis, we demonstrate that a lattice calculation of the easier computable 
connected correlation functions is able to provide valuable information of the noisier disconnected corre-
lation functions, and may serve as a theory guidance for the future refinement of the corresponding lattice 
techniques.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Pion-kaon (πK) scattering is the simplest hadronic scattering process that involves a strange 
quark, and therefore it plays a crucial role in our understanding of the SU(3) chiral symmetry 
breaking of the Quantum Chromodynamics (QCD) [1]. The πK scattering amplitude was cal-
culated within the framework of Chiral Perturbation Theory (ChPT) at one loop [2,3] and at two 
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loops [4], with the appearance of certain low-energy constants (LECs), some of which can be 
fixed in other processes. Naturally, this also provides motivation for the study of πK scatter-
ing using one of the standard first-principle treatments of the strong interaction, namely lattice 
QCD.1

Furthermore, due to the similar isospin structures, an improved understanding of πK

scattering also provides useful insights for πN scattering, which is an important ingredient 
towards resolving the current disagreement between the lattice [7–11] and the dispersion-
theoretical [12–15] determinations of the pion-nucleon sigma term.

So far there exists a number of exploratory studies of πK scattering, in both the I = 3/2
and I = 1/2 channels [16–23]. The I = 1/2 channel is of much interest as it provides useful 
information about the K∗ resonance, but it turns out that this channel is much more difficult to 
handle on the lattice, due to the existence of correlation functions involving the contraction of 
one or more pairs of quarks at the same temporal point (which are often called “disconnected 
diagrams”). Such diagrams have low signal-to-noise ratio, and are also the main reason for the 
increased difficulty in the lattice study of ππ scattering at lower isospin. Obviously, one cannot 
claim to have a controlled error analysis in the lattice study of πK scattering without properly 
understanding the contribution from the disconnected diagrams.

The recent years have seen a systematic development of a theory analysis of contraction di-
agrams in hadron-hadron interactions based on Partially-Quenched Chiral Perturbation Theory 
(PQChPT). The underlying principle is rather straightforward: Contraction diagrams that are 
inseparable in a physical amplitude would become separable upon the introduction of extra 
quark flavors. Since this separation is unphysical, it will unavoidably involve new parameters 
that cannot be fixed by experiment, but can be determined from lattice simulations. This method 
was successfully applied in the analysis of ππ scattering [24–26] and the parity-odd πN cou-
pling [27]. In this paper we generalize it to πK scattering in both the finite and infinite volume. 
We demonstrate that, from the lattice calculation of the two easier computable connected dia-
grams in the I = 3/2 channel, one acquires enough information to make definite predictions of 
the exponential behavior of the harder to compute, disconnected diagram in I = 1/2. This pro-
vides a useful theory gauge to the calculation of the latter on lattice. For a discussion of the status 
of various scattering processes pertinent to chiral dynamics in the continuum and on the lattice, 
see [28].

This work is organized as follows. In Sec. 2 we introduce the different contraction diagrams 
in πK scattering, and demonstrate how they can be expressed in terms of physical scattering 
amplitudes in a deformation of QCD with an extended flavor sector. In Sec. 3 we introduce 
SU(4|1) PQChPT in the infinite volume, and use it to calculate the different contraction diagrams 
up to one-loop accuracy, O(p4). In Sec. 4 we discuss the implications of the results above to the 
actual lattice calculations which are carried out in a finite volume. The final conclusions are given 
in Sec. 5.

2. Contraction diagrams in πK scattering

Assuming isospin symmetry, the πK scattering amplitude can be categorized into two 
isospin channels, T 3/2 and T 1/2. In particular, T 3/2(s, t, u) is given by the scattering ampli-
tude of π+(k1)K

+(p1) → π+(k2)K
+(p2), where the Mandelstam variables s, t, u are defined 

1 For investigations of πK scattering using dispersion relations, see e.g. [5,6].
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Fig. 1. The quark contraction diagrams for I = 3/2 πK scattering. The amplitude for diagram (a) and (b) is given by 
Ta(s, t, u) and Tb(s, t, u) respectively. The thick line indicates the 〈ss̄〉 contraction. The time flows in the horizontal 
direction.

Fig. 2. The contraction diagrams in the I = 1/2 πK scattering.

as s = (k1 + p1)
2, t = (k1 − k2)

2, u = (k1 − p2)
2, respectively, subject to the constraint 

s + t + u = 2(M2
π + M2

K). The I = 1/2 amplitude can be obtained from T 3/2 by appropriate 
crossing:

T 1/2(s, t, u) = 3

2
T 3/2(u, t, s) − 1

2
T 3/2(s, t, u) . (1)

To construct interpolators of mesons on the lattice, one expresses the meson fields in terms of 
their “constituent quarks”, for example, π+ = ud̄ and K+ = us̄. A lattice study of meson-meson 
scattering then consists of computing correlation functions involving all possible contractions 
between quark and anti-quark pairs. For instance, the I = 3/2 amplitude represents the sum of 
the two independent contraction diagrams Ta(s, t, u) and Tb(s, t, u) depicted in Fig. 1:

T 3/2(s, t, u) = Ta(s, t, u) + Tb(s, t, u). (2)

Both contraction diagrams above are purely connected, as there is no contraction between the 
quark–anti-quark pair at the same time coordinate. Therefore, they are rather straightforwardly 
calculable on the lattice. The situation for the I = 1/2 amplitude is quite different. It involves 
three types of contraction diagrams displayed in Fig. 2:

T 1/2(s, t, u) = Ta(s, t, u) − 1

2
Tb(s, t, u) + 3

2
Tc(s, t, u) , (3)

among which the diagram (c) contains a pair of disconnected contractions and is much noisier 
on the lattice. However, from the theory point of view, Tc is nothing but the s → u crossing 
of Tb and is no more complicated than the latter. Therefore, a precise theory description of the 
individual connected diagrams will automatically provide useful information of the disconnected 
ones which can be directly contrasted to lattice results.
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In an ordinary three-flavor QCD the two connected diagrams in Fig. 1 are inseparable in any 
physical scattering amplitude, so one cannot study Tb(s, t, u) by itself. The separation is possible, 
however, in a deformation of QCD with an extended quark sector. In a generic meson-meson 
scattering, in order to isolate each contraction diagram one requires a minimum number of four 
fermionic quarks [24]. But at the same time one needs also one “bosonic quark”, such that its 
loop effect cancels with that from the extra fermionic quark, and thus to keep the sea dynamics 
identical to that of ordinary three-flavor QCD. This leads to SU(4|1) Partially-Quenched QCD 
(PQQCD), in which the quark sector reads q = (u, d, s, j ; j̃ ), where the first four quarks are 
fermionic and the last is bosonic. The quark mass matrix is given by M = diag(m̄, m̄, ms, m̄; m̄), 
where ms is the strange quark mass and m̄ < ms . Notice that this extended theory is actually 
simpler than that needed in the analysis of ππ scattering [25,26]. There, one needs again four 
fermionic quarks for the diagram separations, but two bosonic quarks in order to keep the sea 
dynamics identical to a two-flavor QCD. That leads to an SU(4|2) PQQCD which has more 
pseudo-Nambu-Goldstone (pNG) particles than SU(4|1) (see discussions in the next section). 
The two contractions Ta and Tb can now be expressed in terms of physical scattering amplitudes 
in the extended theory:

Ta(s, t, u) = T(us̄)(dj̄ )→(us̄)(dj̄ )(s, t, u) ,

Tb(s, t, u) = T(us̄)(dj̄ )→(ds̄)(uj̄ )(s, t, u) . (4)

3. Analysis in SU(4|1) PQChPT

The right-hand side of Eq. (4) can be calculated in the low-energy effective field theory (EFT) 
of SU(4|1) PQQCD, namely the SU(4|1) PQChPT [29–35]. In this section we summarize the 
most important results relevant to this work, while interested readers may refer to the literature 
cited above for more details.

Firstly, in complete analogy to the ordinary ChPT, the spontaneous chiral symmetry break-
ing SU(4|1)L ⊗ SU(4|1)R → SU(4|1)V in SU(4|1) PQQCD generates pNG particles that are 
expressed collectively in the following matrix-valued field:

� =
(

φ η1

η2 φ̃

)
, (5)

with:

φ =

⎛
⎜⎜⎝

uū ud̄ us̄ uj̄

dū dd̄ ds̄ dj̄

sū sd̄ ss̄ sj̄

j ū j d̄ j s̄ j j̄

⎞
⎟⎟⎠ , η1 =

⎛
⎜⎜⎜⎜⎝

u
¯̃
j

d
¯̃
j

s
¯̃
j

j
¯̃
j

⎞
⎟⎟⎟⎟⎠ , η2 = (

j̃ ū j̃ d̄ j̃ s̄ j̃ j̄
)

, φ̃ = j̃
¯̃
j . (6)

The supertrace (Str) of � is defined as,

Str� =
4∑

i=1

φii − φ̃. (7)

Since we know that there are only 52 − 1 = 24 independent pNG particles in � (in contrast to 
the 62 − 1 = 35 pNG particles in SU(4|2) for ππ scattering), it is more convenient to introduce 
a supertraceless matrix �′ = � − 1

3 Str�. In particular, the diagonal components in �′ give rise 
to four independent neutral pNG bosons {π0, η, σa, σb} by writing:
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(�′)diag = π0λ
′
3 + σaλ

′
8 + 1

2
√

2
(3η − σb)λ

′
15 + 1

2
√

2
(−η + 3σb)λ

′
24 (8)

where

λ′
3 = 1√

2
diag(1,−1,0,0;0), λ′

8 = 1√
6

diag(1,1,0,−2;0),

λ′
15 = 1√

12
diag(1,1,−3,1;0), λ′

24 = − 1√
24

diag(1,1,1,1;4). (9)

With this we can define the standard non-linear representation of the pNG particles,

U = exp

(√
2i�′

F0

)
, (10)

where F0 is the pNG boson decay constant in the chiral limit, and proceed to construct the most 
general effective chiral Lagrangian. At O(p2) we get:

L(2) = F 2
0

4
Str[∂μU†∂μU ] + F 2

0

4
Str[χU† + Uχ†], (11)

where χ = 2B0M, with M the quark mass matrix. Expanding Eq. (11) up to the quadratic terms 
of pNG fields, we find that there are no mixing terms between different fields, and thus all the 24 
pNG fields are indeed independent particles, with the leading order (LO) squared masses given 
by one of the three following mass parameters:

M̊2
π = 2B0m̄, M̊2

K = B0(m̄ + ms), M̊2
η = 2

3
B0(m̄ + 2ms), (12)

satisfying the Gell-Mann-Okubo formula, 3M̊2
η = 4M̊2

K − M̊2
π . In particular, the four neutral 

particles {π0, η, σa, σb} have LO masses {M̊π , M̊η, M̊π , M̊π }, respectively. One also finds that 
the pNG field propagators are given by the standard form:

Sφ(k) = i

k2 − M2
φ + iε

, (13)

except that the σb propagator acquires an extra negative sign. In short, the diagonalization proce-
dure of the neutral particles in Eq. (8) completely avoids the cumbersome double-pole structures 
in the usual discussions of PQChPT propagators, and greatly simplifies the one-loop analy-
sis.

Applying the Lagrangian in Eq. (11) at one loop results in ultraviolet (UV) divergences that 
are regulated using dimensional regularization (DR) and reabsorbed into the LECs of the most 
general O(p4) chiral Lagrangian without external sources [34,36]:

L(4) = L0Str[(∂μU†)(∂νU)(∂μU†)(∂νU)]
+ (L1 − 1

2
L0)Str[(∂μU†)(∂μU)]Str[(∂νU

†)(∂νU)]
+ (L2 − L0)Str[(∂μU†)(∂νU)]Str[(∂μU†)(∂νU)]
+ (L3 + 2L0)Str[(∂μU†)(∂μU)(∂νU

†)(∂νU)]
+ L4Str[(∂μU†)(∂μU)]Str[U†χ + χ†U ]
+ L5Str[(∂μU†)(∂μU)(U†χ + χ†U)]
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Table 1
Coefficients of the UV divergence in the SU(4|1) PQChPT.

i 0 1 2 3 4 5 6 7 8

�i
1

16
3
32

3
16 0 1

8
3
8

11
144 0 5

48

+ L6(Str[U†χ + χ†U ])2 + L7(Str[U†χ − χ†U ])2

+ L8Str[χU†χU† + χ†Uχ†U ] . (14)

Here it is useful to notice that the LECs {Li}8
i=1 are identical to those in the ordinary SU(3) 

ChPT [1], and the only new LEC is L0. This can be seen by observing that Eq. (14) is equivalent 
to the O(p4) chiral Lagrangian of the ordinary SU(3) ChPT at tree level as long as the involved 
particles are the ordinary SU(3) pNG bosons. The renormalized LECs are defined by Lr

i = Li −
λ�i , where

λ = − 1

32π2

(
2

4 − d
+ log(4π) − γE + 1

)
, (15)

with γE the Euler-Mascheroni constant, and d is the number of space-time dimensions. The 
divergence (β-function) coefficients {�i} are summarized in Table 1.

Below we quote the analytical results up to O(p4) needed in this work. First, the physical 
pion, kaon masses and the pion decay constant are just the same as in ordinary ChPT [1]:

M2
π = M̊2

π

[
1 + μπ − μη

3
+ 16M2

K

F 2
π

(2Lr
6 − Lr

4) + 8M2
π

F 2
π

(2Lr
6 + 2Lr

8 − Lr
4 − Lr

5)

]
,

M2
K = M̊2

K

[
1 + 2μη

3
+ 8M2

π

F 2
π

(2Lr
6 − Lr

4) + 8M2
K

F 2
π

(4Lr
6 + 2Lr

8 − Lr
4 − Lr

5)

]
,

Fπ = F0

[
1 − 2μπ − μK + 8M2

K

F 2
π

Lr
4 + 4M2

π

F 2
π

(Lr
4 + Lr

5)

]
, (16)

where μP = (M2
P /32π2F 2

π ) ln(M2
P /μ2), with μ the scale of dimensional regularization.

The two contraction diagrams Ta and Tb, expressed as SU(4|1) physical scattering amplitudes 
in Eq. (4), are given up to O(p4) as:

Ta(s, t, u) = μπ

8F 2
πM2

π (M2
π − M2

K)
[16M4

KM2
π + 2M2

K(14M4
π − 7M2

π t + t2)

+ M2
π (16M4

π − 15M2
π t − 6s2 − 4su − 6u2)] + μK

4F 2
πM2

K(M2
K − M2

π )

[8M6
K + 8M4

K(2M2
π − t) + M2

K(8M4
π − 8M2

π t − 3s2 − 2su − 3u2)

+ M2
π t2] + M2

πμη

72F 2
πM2

η(M2
K − M2

π )
[−32M4

K + M2
K(18t − 4M2

π )

+ 9M2
π t] + t (M2

π + t)

8F 4
π

J̄ππ (t) − M2
π (8M2

K − 9t)

72F 4
π

J̄ηη(t) + t2

8F 4
π

J̄KK(t)

+ (M2
K + M2

π − s)2

4 J̄πK(s) + (M2
K + M2

π − u)2

4 J̄πK(u)

4Fπ 4Fπ
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+ M2
π (4M2

K − 3t)

12F 4
π

J̄πη(t) + 8

F 4
π

[3M4
K + M2

K(4M2
π − 2t)

+ 3M4
π − 2M2

π t − s2 − su − u2]Lr
0 + 8

F 4
π

(t − 2M2
K)(t − 2M2

π )Lr
1

+ 4

F 4
π

[(s − M2
π − M2

K)2 + (u − M2
π − M2

K)2]Lr
2 + 8

F 4
π

[M2
K(t − 4M2

π )

+ M2
π t]Lr

4 + 32M2
KM2

π

F 4
π

Lr
6 + 4M2

KM2
π − 9t (M2

π + t)

576π2F 4
π

(17)

and

Tb(s, t, u) = M2
K + M2

π − s

2F 2
π

+ μπ

24F 2
πM2

π (M2
π − MK2)

[−2M4
K(9M2

π + 2t)

+ M2
K(6M4

π + 3M2
π (5t + 6u) + 8t2 + 4tu) + M2

π (24M4
π − 2M2

π

(4t + 9u) − 8t2 − 7tu − 6u2)] + μK

12F 2
πM2

K(M2
K − M2

π )
[30M6

K

+ 2M4
K(9M2

π − 10t − 12u) + M2
K(3M2

π (3t − 4u) − 2t2 + 2tu + 6u2)

+ M2
π t (−M2

π + 2t + u)] + μη

8F 2
π(M2

K − M2
π )

[−18M4
K + M2

K(15t

+ 18u − 10M2
π ) − 6M2

π (t − u) − 3tu − 6u2] + 1

12F 4
π

[2t2 + tu + 4M4
π

+ M2
K(4M2

π − t) − 2M2
π (3t + 2u)]J̄ππ (t)

+ 1

24F 4
π

[4M4
K + M2

K(4M2
π − 3t − 4u) + t (−M2

π + 2t + u)]J̄KK(t)

+ 1

16F 4
π

[−4M4
K + M2

K(8M2
π − 2t) − 4M4

π − 2M2
π t + tu + 2u2]J̄πK(u)

+ t

16F 4
π

(M2
K − M2

π )2

u
J̄πK(u) − M2

π (4M2
K − 3t)

12F 4
π

J̄πη(t) + 1

144F 4
π

[44M4
K

+ M2
K(56M2

π − 42t − 48u) − 4M4
π + 6M2

π (t − 4u) + 9tu + 18u2]J̄Kη(u)

− (M2
K − M2

π )2(16M2
K − 8M2

π − t)

144F 4
π

J̄Kη(u)

u

+ (M2
K − M2

π )4

72F 4
πu2 (9 ¯̄JπK(u) + ¯̄JKη(u))

− 8

F 4
π

[−s2 − su − u2 + 3M4
K + M2

K(4M2
π − 2t) + 3M4

π − 2M2
π t]Lr

0

+ 2

F 4
π

[(t − 2M2
K)(t − 2M2

π) + (u − M2
π − M2

K)2]Lr
3

− 4M2
π (M2

K − M2
π + s)

F 4
π

Lr
5 + 16M2

KM2
π

F 4
π

Lr
8

+ 1
2 4 [11M4

K + M2
K(10M2

π − 9t − 7u) + 3M4
π
384π Fπ
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+ M2
π (5t − 3u) − 5t2 + tu + u2] . (18)

Here, the two-point functions J̄PQ and ¯̄JPQ are defined as [37]:

J̄PQ(s) = 1

32π2

[
2 +

(
�

s
− �

�

)
ln

M2
Q

M2
P

− ν(s)

s
ln

[s + ν(s)]2 − �2

[s − ν(s)]2 − �2

]

¯̄JPQ(s) = J̄PQ(s) − s

32π2

[
�

�2 + 2
M2

P M2
Q

�3 ln
M2

Q

M2
P

]
, (19)

where

� = M2
P − M2

Q, � = M2
P + M2

Q, ν(s) =
√

[s − (MP + MQ)2][s − (MP − MQ)2]. (20)

The third contraction diagram is simply given by Tc(s, t, u) = Tb(u, t, s). Finally, we are also 
interested in their values at the threshold, s0 = (MK + Mπ)2, t0 = 0 and u0 = (MK − Mπ)2, 
which are given by:

(Ta)thr = M2
KM2

π

F 2
π (M2

K − M2
π )

(
9

2
μπ − 4μK − 8M2

K + M2
π

18M2
η

μη

)
+ M2

KM2
π

F 4
π

(−48Lr
0 + 32Lr

1

+ 32Lr
2 − 32Lr

4 + 32Lr
6 + J̄πK(s0) + J̄πK(u0)) + M2

KM2
π

144π2F 4
π

(21)

(Tb)thr = −MKMπ

F 2
π

+ μπ

4F 2
π (M2

K − M2
π )

[M4
K + 2M3

KMπ + 5M2
KM2

π − 10MKM3
π ]

+ μK

2F 2
π (MK − Mπ)

[2M3
K + 2M2

KMπ + MKM2
π − M3

π ]

− μη

4F 2
π (M2

K − M2
π )

[3M4
K + 6M3

KMπ + 11M2
KM2

π − 6MKM3
π ]

− 1

8F 4
π

[(MK − Mπ)2(M2
K + 6MKMπ + M2

π )]J̄πK(u0) − 1

72F 4
π

[M4
K

+ 4M3
KMπ − 42M2

KM2
π + 4MKM3

π + M4
π ]J̄Kη(u0) + (MK + Mπ)4

72F 4
π

(9 ¯̄JπK(u0)

+ ¯̄JKη(u0)) + 8M2
KM2

π

F 4
π

(
6Lr

0 + 2Lr
3 − MK + Mπ

MK

Lr
5 + 2Lr

8

)

+ (MK + Mπ)2(5M2
K + M2

π )

384π2F 4
π

(22)

and (Tc)thr is obtained by replacing Mπ → −Mπ (which also means u0 → s0) in (Tb)thr.

4. Finite-volume analysis

We now discuss the implications of the results above, which are obtained in a field theory at 
infinite volume, to the discrete energies calculated on the lattice in a finite volume. The analysis 
in this section is a straightforward generalization of that in Ref. [26].
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To do so we construct three effective single-channel scattering amplitudes using Ta , Tb and 
Tc. First, consider the 2 × 2 scattering matrix between the asymptotic states |ψ1〉 = |us̄〉 ∣∣dj̄

〉
and 

|ψ2〉 = |ds̄〉 ∣∣uj̄
〉
. Diagonalizing this matrix gives two single-channel scattering amplitudes:

Tα(s, t, u) = Ta(s, t, u) + Tb(s, t, u), Tβ(s, t, u) = Ta(s, t, u) − Tb(s, t, u) . (23)

In particular, Tα(s, t, u) = T 3/2(s, t, u). The third single-channel amplitude is simply:

Tγ (s, t, u) = T 1/2(s, t, u) = Ta(s, t, u) − 1

2
Tb(s, t, u) + 3

2
Tc(s, t, u) . (24)

For each single-channel amplitude one could perform the partial-wave expansion in the center-
of-mass (CM) frame:

T (s, t, u) =
∞∑
l=0

(2l + 1)Tl(E)Pl(cos θ), (25)

where E = √
s is the CM energy, θ is the scattering angle and {Pl(x)} are the Legendre polyno-

mials. The l = 0 (i.e. S-wave) partial-wave amplitude is parameterized as:

T0(E) = 8πE

p cot δ0(E) − ip
, (26)

where p is the CM momentum and δ0(E) is the S-wave phase shift. At small p one performs the 
effective range expansion:

p cot δ0(E) = − 1

a0
+ 1

2
r0p

2 + . . . , (27)

which defines the S-wave scattering length a0 and effective range r0. The S-wave scattering 
lengths of the three single-channel amplitudes above are given by:

aα
0 = − 1

8π
√

s0

[
(Ta)thr + (Tb)thr

]
,

a
β
0 = − 1

8π
√

s0

[
(Ta)thr − (Tb)thr

]
,

a
γ

0 = − 1

8π
√

s0

[
(Ta)thr − 1

2
(Tb)thr + 3

2
(Tc)thr

]
. (28)

In particular, aβ
0 is the only one among the three that depends on the unphysical LEC Lr

0. The 
latter does not affect the pNG boson masses and decay constants at O(p4), but does contribute 
to the scattering parameters.

The discrete energies E extracted from lattice correlation functions at finite volume can be 
obtained by solving the single-channel Lüscher’s formula [38] (see also Ref. [20,39] for more 
discussions):

p cot δ0(E) = 2π

L
π−3/2Z00(1;q2), q = p

L

2π
, (29)

where L is the lattice size and Z00 is the Lüscher zeta-function. This gives the discrete ground-
state energies of the three channels as known functions of the scattering lengths and lattice size 
Ei = f (ai , L), (i = α, β, γ ). Therefore, if we define Ci(τ ) (i = a, b, c) as the lattice correlation 
0 0
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function corresponding to the contraction diagram of type i at the Euclidean time τ , then the 
following combinations of correlation functions decay as a single exponential at large τ :

Ca(τ) + Cb(τ) ∼ Aα exp{−Eα
0 τ } ,

Ca(τ ) − Cb(τ) ∼ Aβ exp{−E
β
0 τ } ,

Ca(τ ) − 1

2
Cb(τ) + 3

2
Cc(τ) ∼ Aγ exp{−E

γ

0 τ } . (30)

Hence, through a single lattice calculation of the difference between Ca and Cb which both 
appear in the I = 3/2 channel, one is able to obtain Eβ

0 and thus fix the unknown LEC Lr
0. 

After doing so, all the three discrete energies {Eα
0 , Eβ

0 , Eγ

0 } are fully predictable given any set 
of lattice parameters. This is beneficial in multiple ways. For instance, we know that the most 
difficult disconnected correlation function Cc(τ) depends on three exponents:

Cc(τ) ∼ −1

6
Aα exp{−Eα

0 τ } − 1

2
Aβ exp{−E

β
0 τ } + 2

3
Aγ exp{−E

γ

0 τ } , (31)

and all the three exponents are known functions of {m̄,ms,L}. This provides a useful theory 
gauge of the accuracy for lattice studies of Cc(τ), which directly tests the lattice techniques in 
handling disconnected diagrams. Furthermore, once Lr

0 is fixed from lattice data, the SU(4|1)

chiral Lagrangian (without external sources) will be completely known to NLO, so it could be 
applied to the lattice study of other interesting hadronic processes such as the ππ → KK̄ scat-
tering.

We end this section by estimating the LEC Lr
0. Integrating out the strange quark from the 

theory, the graded algebra SU(4|1) reduces to SU(3|1). The LEC L0 appearing in this reduced 
theory should be the same as in the SU(4|2) version and thus is known with a sizable uncertainty, 
Lr

0 = 1.1(1.0) · 10−3, which comes from an NNLO analysis of lattice data in Ref. [40]. In our 
new formalism, Lr

0 appears at NLO in the SU(4|1) scattering amplitudes, so one could in general 
expect an order-of-magnitude improvement of its accuracy through the analysis of the lattice 
πK contraction diagrams, just like what happened to the combination 3Lr

0 + Lr
3 in SU(4|2) as 

demonstrated in Ref. [26]. The actual analysis will appear in a future work.

5. Conclusions

As a natural generalization of previous works, we perform a PQChPT analysis of the different 
contraction diagrams in πK scattering, in both infinite and finite volume. We show that up to 
O(p4) there is only one undetermined LEC in the EFT, which can be fixed by the lattice study of 
the connected contraction diagrams in the I = 3/2 channel. After doing so, the large-τ behavior 
of the disconnected correlation function in the I = 1/2 channel is predictable as a function of 
lattice parameters. These theory predictions can then be contrasted with actual lattice calcula-
tions, serving as an important cross-check to the latter and reducing their associated systematic 
uncertainties. Finally, the theory analysis above can be generalized to πN scattering and will be 
carried out in a follow-up work.
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