001     889260
005     20240610115538.0
024 7 _ |a 10.1080/10619127.2020.1752092
|2 doi
024 7 _ |a 1050-6896
|2 ISSN
024 7 _ |a 1061-9127
|2 ISSN
024 7 _ |a 1931-7336
|2 ISSN
024 7 _ |a 2128/26736
|2 Handle
037 _ _ |a FZJ-2021-00165
082 _ _ |a 530
100 1 _ |a Meissner, Ulf-G.
|0 P:(DE-Juel1)131252
|b 0
|e Corresponding author
245 _ _ |a Precision Predictions
260 _ _ |a London [u.a.]
|c 2020
|b Taylor & Francis
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1617694041_23317
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a First, I should define what is meant by a precision prediction: A prediction is considered precise if it has a small (relative) theoretical uncertainty. This, however, does not imply that it agrees with an experiment. Also, the mentioned small uncertainty can be best quantified if we have an underlying counting rule based on some small parameter. Needless to say, a prediction without uncertainty makes little sense. Finally, in what follows I will mostly consider the interplay of precision predictions with the corresponding precise experiments.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|x 0
|f POF III
536 _ _ |a DFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076)
|0 G:(GEPRIS)196253076
|c 196253076
|x 1
536 _ _ |a Nuclear Lattice Simulations (jara0015_20200501)
|0 G:(DE-Juel1)jara0015_20200501
|c jara0015_20200501
|x 2
|f Nuclear Lattice Simulations
588 _ _ |a Dataset connected to CrossRef
773 _ _ |a 10.1080/10619127.2020.1752092
|g Vol. 30, no. 2, p. 17 - 20
|0 PERI:(DE-600)2164664-8
|n 2
|p 17 - 20
|t Nuclear physics news
|v 30
|y 2020
|x 1931-7336
856 4 _ |u https://juser.fz-juelich.de/record/889260/files/2001.05213.pdf
|y Published on 2020-07-20. Available in OpenAccess from 2021-07-20.
909 C O |o oai:juser.fz-juelich.de:889260
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)131252
913 1 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Computational Science and Mathematical Methods
|x 0
913 2 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2020
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-22
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-08-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-08-22
920 1 _ |0 I:(DE-Juel1)IAS-4-20090406
|k IAS-4
|l Theorie der Starken Wechselwirkung
|x 0
920 1 _ |0 I:(DE-Juel1)IKP-3-20111104
|k IKP-3
|l Theorie der starken Wechselwirkung
|x 1
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-4-20090406
980 _ _ |a I:(DE-Juel1)IKP-3-20111104
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-4-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21