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Precision predictions combined with precise measurements are a major tool in sharpening 

our understanding of the fundamental laws underlying microscopic as well as macroscopic 

systems. Here, I present a few remarkable examples covering the fields of nuclear, particle 

and astrophysics.  
 

 



 

 

1.  PROLOGUE 

 

This manuscript grew out of a talk at the first Joint 

ECFA-NuPECC-ApPEC Seminar at Paris in October 

2019 (JENAS-2019) that brought together physicists 

from particle, hadronic and nuclear physics as well as 

from astrophysics and cosmology. I was asked to 

summarize the role of ``precision predictions’’ at this 

meeting. Clearly, given the time constraints, this could 

only cover a very small fraction of all the intriguing 

results in the different fields and the choice of topics 

therefore had to be entirely subjective. 
  
 

2.  INTRODUCTION 

 

First, I should define what is meant by a precision 

prediction: A prediction is considered precise, if it has  a 

small (relative) theoretical uncertainty. This, however, 

does not imply that it agrees with experiment. Also, the 

mentioned small uncertainty can be best quantified if we 

have an underlying counting rule based on some small 

parameter. Needless to say that a prediction without 

uncertainty makes little sense. Finally, in what follows I 

will mostly consider the interplay of precision 

predictions with the corresponding precise experiments. 
 
To set the stage, let me consider two by now classical 

examples. The first one concerns the masses of the top 

quark and the Higgs boson, that where already known 

within certain ranges before the direct measurements. 

The underlying idea is that virtual heavy particles can 

leaves traces in processes involving lighter ones, such as 

the top quark in loops in electron-positron collisions at 

LEP producing e.g. abb pair that further hadronizes into 

jets, see Fig.1. 
 

 

 

 

 

 

 

 

 

 

 

 
FIG. 1: A typical one-loop radiative corrections in e+e-  → bb 

at LEP with a virtual top quark excitation.  
 

Combining such precision measurements with extremely 

precise higher-loop electroweak calculations, the top 

quark mass was known to be in the range between 150 

and 200 GeV, see e.g. [1], completely consistent with the 

direct measurement of 175 GeV at the Tevatron in 1995. 

Similarly, a window for the Higgs boson mass was set by 

radiative corrections between 114 and 156 GeV, again 

consistent with the direct measurement of 125 GeV at 

CERN in 2012. The second well-known example is the 

so-called Hulse-Taylor pulsar, which has led to fine tests 

of general relativity (GR). In fact, GR predicts the 

slowing down of the pulsar period  Pb due to the radiation 

of gravitational waves. In their famous paper from 1979, 

Taylor, Fowler and McCullogh state that measurements 

of relativistic effects in the orbit of this binary pulsar lead 

to a quantitative confirmation of the existence of 

gravitational radiation at the level predicted by GR [2]. 

Over four decades, this system has become a true 

precision test of GR, clearly giving evidence to the 

existence of gravitational waves as predicted by GR [3]. 

Gravitational waves where finally detected directly by 

LIGO/VIRGO in 2015. In what follows, I discuss a few 

selected recent results. 
 
 

3.  FROM SCHWINGER’S TOMBSTONE TO  

ULTRAHIGH PRECISION 

 

Dirac made the famous prediction that the Landé factor 

of an electron is g=2, which was challenged by 

experiments in the late 1940ties. Schwinger, one of the 

fathers of QED, did the first calculation of the anomalous 

magnetic moment of the electron, ae= (ge-2)/2 = /(2π) = 

1.1·10-3, with  the fine-structure constant,  = 

1/137.03599… [4]. This was the dawn of the precision 

era and this textbook result is engraved on Schwinger’s 

tombstone in Pasadena. In fact, the anomalous magnetic 

moment is the most precise prediction of the 

tremendously successful Standard Model (SM) of the 

strong, electromagnetic and weak interactions, ae = 

ae(QED) +ae(weak)+ae(strong). The QED part splits into 

various pieces depending on the lepton mass ratios, 

ae(QED) = A1 + A2(me/m) + A2(me/m) + 

A3(me/m,me/m),  in terms of the electron, the muon and 

the tau mass. To achieve sub-ppb precision as in 

experiment, we must know A1 to tenth order, as (/π)5 = 
0.07·10-12. The completed and correct calculation of the 

12762 tenth order diagrams was reported by Kinoshita 

and collaborators in 2018 [5]. The  SM prediction reads 

ae(th’y) = 1159652182.037(11)(12)(229)·10-12, where the 

first error is due to QED, the second one stems from QCD 

and the last one from the uncertainty in , measured from 

the Rydberg levels in atomic Cs [6]. The weak 

contribution is too small to feature here. This result 

agrees remarkably well with the so far most precise 

measurement, ae(exp) = 1159652181.73(28)·10-12 [7]. 



 

 

One notices a small tension, but before speculating about 

a possible beyond the SM contribution, the planned 

improved measurements of the Rydberg constant and of 

the anomalous magnetic moment of the electron should 

be performed, see e.g. [8]. 
 

The effects of heavy mass particles are enhanced by 

(m/me)2  43000 in the muon (g-2). Here, there is a 

tension between the most precise experiment and the 

theory, see e.g. [9], but to really draw firm conclusions, 
one is eagerly awaiting on the one hand the result of the 

new Fermilab measurement and on the other hand an 

improved calculation of the theoretical uncertainty for 

the hadronic light-by-light scattering contribution based 

on dispersion theory [10]. 
 

 

 

4.  PRECISION SIGMA-TERM PHYSICS 

 
Massless classical QCD is invariant under scale 

transformations (dilatations), r → r, with  a real number. 

This scale invariance is broken by quantization, the well-

known dimensional transmutation leads to the scale ΛQCD 

= 250 MeV, that can e.g. be inferred from the running of 

the strong coupling constant as well as the non-vanishing 

of the trace of the QCD energy-momentum tensor, Θ
. 

This so-called trace anomaly leads to the generation of 

hadron masses. For the proton |p>, this reads (neglecting 

a small anomalous dimension term) [11] 
 

mp  = <p|Θ


 |p>  
      = <p|(QCD/g)Ga

G
a +muuu+mddd+msss|p>, (1)     

 

with QCD the QCD -function, g the strong coupling 

constant, G
a the gluon field strength tensor and mf  the 

mass of the quark with flavour f, f=u,d,s. The first term 

in Eq.(1) is pure gluon field energy and the last three 

terms give the contribution from the Higgs boson to the 

proton mass. The term proportional to the light up and 

down (strange) quark masses is called the pion-nucleon 

(strangeness) sigma-term, πN and s, respectively. The-

se sigma-terms play a much larger role than just giving a 

part of the proton mass, they parameterize the scalar 

couplings of the nucleon, that are of utmost importance 

for direct dark matter detection as well as muon to 

electron conversion in nuclei. The pion-nucleon sigma-

term also features in the leading density-dependence of 

the scalar quark condensate and in CP-violating πN 

couplings that contribute to electric dipole moments of 

the nucleon and light nuclei.   
 

The πN sigma-term can most precisely be determined 

from a Roy-Steiner (RS) analysis of pion-nucleon 

scattering, using the precision pionic atom data from PSI 

that allow for an accurate extraction of the πN S-wave 

scattering lengths [12]. The RS analysis is in fact the first 

ever dispersive analysis of πN scattering with error bars, 

it leads to a high-precision determination of πN 

=59.1(3.5) MeV [13], which is quite an achievement in 

hadron physics. The strangeness sigma-term is less well 

determined, combining lattice QCD and chiral 

perturbation theory results leads to s = 30(30) MeV. 

Consequently, only about 100 MeV of the nucleon mass 

are due to the Higgs. Stated differently, in a world with 

massless quarks, the proton would still weigh in with 

about 840 MeV, quite different from the pion, that would 

be massless in such a world due to its Goldstone boson 

nature. This is a central result of QCD! It should be noted, 

however, that present lattice QCD determinations of the 

pion-nucleon sigma-term are inconsistent with our 

knowledge of the S-wave pion-nucleon scattering lengths, 

see [14]. This is definitely a challenge to the lattice QCD 

community. 
 

 

5.  PRECISION SHAPIRO DELAY PHYSICS 

 

In his seminal paper in 1915, Einstein proposed three 

tests of GR, namely the perihelion motion of Mercury, 

the bending of light by massive bodies and gravitational 

waves. While the first was already observed earlier, light 

bending was seen by Eddington in 1919 and gravitational 

waves as predicted by GR were detected in 2015. In 1964, 

Shapiro had proposed a fourth test of GR, namely the 

time delay in a signal due to the reduction of the speed of 

light in curved space-time [15]. More precisely, light 

moves on geodesics and these are modified in curved 

space-time, leading to a delay in the arrival time of a 

signal. In the standard approximation for a binary system, 

where the signal is sent from the body A, the Shapiro 

delay is given in terms of two parameters (first post-

Newtonian approximation), namely the Shapiro range, rsh  

= GmB /c3, with G Newton’s constant,  mB  the mass of the 

companion and c the speed of light, and the so-called 

Shapiro shape, ssh= sin i, with i the inclination of the orbit.  

To this order in the expansion of (v/c)2, with v the 

velocity of the companion, the predictions of GR agree 

very well with the data from the double pulsar PSR 

J0737-3039A and B [16].  An update of this work is 

depicted in Fig.2, where new measurements of the 

Shapiro delay in this system are shown. The delay is 

largest at superior conjunction (orbital phase of 90 

degrees), when the emitting pulsar is located behind its 

companion as seen from Earth. The solid curve shows the 

expectation from GR.  The remaining small deviations 

resulting from higher order effects have been detected 

and will be discussed by an upcoming work in [17]. 

Higher order propagation delays in the (v/c) 2 expansion 

for a binary system are: 1) retardation [18], 2) light 

bending [19] and 3) the pulsar rotation [20]. This fine 



 

 

prediction of GR is in remarkable agreement with the 

most recent data [17]. In fact, the theoretical uncertainty 

in the prediction of the Shapiro delay is about 0.02%, 

which is quite amazing. 

 

 

 
 

 

FIG. 2: Shapiro time delay measured for the double pulsar 

system (PSR J0737-3039A/B) as a function of the orbital 

phase. Figure courtesy of Michael Kramer. 

 

 

 

6. PRECISION MEETS ANTHROPICS 

 
Nuclear lattice effective field theory is a relatively  new 

tool to perform ab initio nuclear structure and reaction 

calculations at the sub-percent level, see e.g. the recent 

monograph [21]. In an earlier article in this journal [22], 

I had already discussed how this framework can be used 

to investigate the closeness of the so-called Hoyle state 

in 12C to the triple-alpha threshold as a function of the 

fundamental parameters of the SM. This energy differ-

ence plays an eminent role in the discussion of the so-

called anthropic principle. I just would like to mention 

here that there has been a recent update on the calculation 

of the parameter-dependence of this quantity, partly 

triggered by new stellar simulations investigating the 

dependence of carbon and oxygen production in stars on 

the aforementioned energy difference as well as on the 

star’s  metallicity [23]. Also, the description of the quark 

mass dependence of the NN S-wave scattering lengths, 

that feature prominently in this calculation, has been 

improved, but still lattice QCD simulations closer to the 

physical point are needed to reduce the ensuing 

uncertainties (even worse, there is some sizeable tension 

between the existing lattice QCD determinations of the 

NN S-wave scattering lengths). The most interesting 

finding of this new work is that the scenario of no fine-

tuning in the light quark masses can now be excluded. 

The interested reader is referred to [24] for a more 

detailed discussion and further references. 

7. SUMMARY AND CONCLUSIONS 

 

Let me briefly summarize the main lessons learned here: 

 

1) Precision predictions rest on scale separations, 

therefore effective field theories are the best tool 

to make precision predictions (or other methods 

that can either deal with perturbative or non-

perturbative physics in a systematic way). 

2) Precision predictions, or, more generally, 

precision physics, are (is) of ever growing im-

portance. 

3) Precision physics is arguably our best take on 

discovering physics beyond the Standard Model. 

4) Consequently, we need to sharpen the 

predictions where the SM gives only a tiny 

contribution, such as the electric dipole 

moments of nucleons and light nuclei. 

 
I hope that with this short essay I could convey the 

fascination related to precision physics. It sometimes 

might take a long time that such a prediction can be 

confronted with an equally precise experiment, but this 

should not stop us from investing more time and effort 

into this rewarding field, independent of the area of 

research one is working in. 
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