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Recently, we have worked out the axial two-nucleon current operator to leading one-loop order in chiral
effective field theory using the method of unitary transformation. Our final expressions, however, differ from the
ones derived by the JLab-Pisa group using time-ordered perturbation theory [Phys. Rev. C 93, 015501 (2016);
93, 049902(E) (2016); 95, 059901 (E) (2017)]. In this paper we consider the box diagram contribution to the axial
current and demonstrate that the results obtained using the two methods are unitary equivalent at the Fock-space
level. We adjust the unitary phases by matching the corresponding two-pion exchange nucleon-nucleon potentials
and rederive the box diagram contribution to the axial current operator following the approach of the JLab-Pisa
group, thereby reproducing our original result. We provide a detailed information on the calculation of the box
diagram including the relevant intermediate steps in order to facilitate a clarification of this disagreement.
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I. INTRODUCTION

Nuclear axial-vector current operators have been first ad-
dressed in the framework of chiral effective field theory
(EFT) in Ref. [1]. The dominant single-nucleon contribu-
tion emerges at order 3, with Q denoting the expansion
parameter of chiral EFT, from the standard Gamow-Teller
operator. Contributions to the exchange axial charge and
current operators for general kinematical conditions have
been recently worked out to order Q by the Bochum-Bonn
group [2] using the method of unitary transformation and
independently by the JLab-Pisa group [3] using time-ordered
perturbation theory. The latter approach relies on the transfer
matrix and defines the effective potential and current operators
by subtracting the corresponding iterative contributions. Gen-
erally, nuclear interactions derived using different methods are
expected to be equivalent modulo off-shell effects. However,
a direct comparison of the results for, e.g., the two-nucleon
two-pion-exchange contributions proportional to g, where
g4 denotes the nucleon axial coupling constant, given in
Egs. (5.29) and (5.31) of our work [2] and those in Egs. (7.4),
(7.5) of Ref. [3], see also Egs. (16), (17) of Ref. [4], lets
one conclude that both results cannot be unitarily equivalent
for the class of unitary transformations considered in [2],
thus indicating that at least one of the calculations should
be incorrect (unless we have misinterpreted the approach
and/or conventions of Refs. [3,4]). To shed light on this issue
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and to enable a more direct comparison between the two
approaches, we present in this paper a detailed calculation
of the contribution of the box diagram e8 in Fig. 4 of [3]
to the exchange axial current density, which leads to the
already mentioned problematic terms og). Specifically, we
rederive the corresponding expressions using the method of
the JLab-Pisa group, thereby reproducing our original results.
To facilitate the error diagnostics and a more detailed compar-
ison, we also provide various intermediate-stage expressions
of our calculations.

Our paper is organized as follows. Given that nuclear
potentials and currents are scheme-dependent quantities, we
first need to clarify the relation between the interactions
obtained using both methods. To this aim, we focus in Sec. 11
on the case without external sources and employ the method
of the JLab-Pisa group to derive the expressions for the
two-pion exchange potential, which turn out to coincide in
both approaches. This allows us to unambiguously fix the
phases of two unitary transformations on the purely nucleonic
subspace of the Fock space that appear at this chiral order.
We then give the Fock-space expression for the effective
potential of the JLab-Pisa group up to order Q@ in terms of
the pion-nucleon vertex g4 and the corresponding energy
denominators, including relativistic corrections that are not
related to the expansion of the g4 vertex. Having fixed the
unitary phases as described above, we use the JLab-Pisa
method to derive the Fock-space expressions for the axial-
vector operators involving 1, 3, and 5 pion-nucleon vertices
oxga. The resulting expressions are verified to be unitarily
equivalent to the ones obtained in Ref. [2] using the method
of unitary transformation. Next, in Sec. III, we use the de-
rived Fock-space operators to calculate the non-pion-pole
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contributions of the box and crossed-box diagrams to the
axial-vector current. We give expressions for the current
before evaluating the loop integrals, perform the Passarino-

J

Veltman reduction of the relevant tensor integrals and provide
explicit expressions for the remaining scalar integrals. The
results of this paper are briefly summarized in Sec. I'V.

II. NUCLEAR FORCES UP TO NLO: FIXING THE UNITARY AMBIGUITY

To derive the effective nuclear potential we start with Eqs. (12)—(15) of Ref. [5]. The half-off-shell transfer matrix 7 and the
free Green’s function Gy in these equations depend on the energy E; of the initial state (see Eq. (8) of [5]). Since we focus here
on the box diagrams, we only retain the leading pion-nucleon vertex g4, and we also do not consider the relativistic corrections
to this vertex. The inversion of the half-off-shell transfer matrix via Egs. (12)—(15) of [5] leads to the effective potential, that is
identical to the one obtained using the so-called folded-diagram technique [6], see also Ref. [7]:

1

A
o _UV_V’%
w

Urp

) 1 )»l
Vpp = nVSEVn — nVEVnHOn,

Al Al Al oAz Al

Al Al Al
vip = 20VE=SVaHon — nV 5 VanHgn — nVE> SV + gV VgV =V — gV —V ==V —Vn,
w- w- w w w w w w

3 )\l )\l )\'1 )\'1 1 )\'1 )\‘1 )\'2 )\‘1
va) = WVQ?VUHO'?V;Vn + nVEVnV;VnHQn + UVEVWVEVWHOU — nVEV;VZVnHOn
1 )\‘2 )\'l )Ll )\2 )Ll 1 1 )\‘l )\'2 )\‘l
—nV—V—=V—VnHyn — nV—V —V —=VnHyn —2nVE—=VnV—Vn+npVE—=V—V—Vn
0w 0 w o o o? w3 w 0 0w
Al Al A A%l Aoaz ol
—nV=VnVE—=Vn+nV—VE—=V—Vn4+nV—V—-VE—Vn. €))]
w? w? ) o o !

Here, and in what follows, n (A’) denotes the projection
operator onto the purely nucleonic states of the Fock space
(states involving i pions), V is the operator corresponding to
the pion-nucleon vertex g4 ! while w and £ denote the sum
of n pion energies w; = v/ p? + M2 and the kinetic energy
of nucleons in an intermediate state A", respectively. Further,
the superscript (n) gives the order Q of the chiral expansion.
Following the approach of Refs. [3-5], we count the nucleon
mass as my ~ A,, with A, denoting the breakdown scale
of chiral EFT. The calculations by the Bochum-Bonn group
employ the counting scheme with Q/my ~ (Q/A, ).

The manifestly non-Hermitian effective potential in Eq. (1)
is uniquely determined for a given half-off-shell 7 matrix.
Changing the off-shell behavior of the 7' matrix by adding
terms proportional to [Hy, X], where X is an arbitrary oper-
ator, and applying the same inversion procedure leads to a
different effective potential. Off-shell changes of the 7" matrix
can be understood in terms of similarity transformations of
the effective Hamiltonian. Since the authors of Ref. [5] do
not specify the operator X, we need to extract the off-shell
behavior of the 7 matrix from their final expressions for the
effective potential. To derive nuclear forces in the convention
of the JLab-Pisa group, we apply a series of similarity trans-
formations on the potential vgp of Eq. (1). We first bring vgp

'In our earlier paper [2], we used for this vertex the notation Hz(’ll) in
order to signify that it involves two nucleon fields and one pion field
and has the dimension k¥ = 1 as defined in Ref. [2]. Since we only
consider this type of vertex here, we choose to employ a simpler
notation.

into a Hermitian form by applying a similarity transformation
[7.8]

Vokubo = (1 +AAT + AT 2upp (1 + AAT + ATA)712.2)

Here, vokubo is precisely the Hermitian potential that is ob-
tained from the underlying pion-nucleon Hamiltonian H via
the unitary transformation introduced by Okubo [9],

Vokubo = UTHU — H,

T Ay=1/2
U= ((n+A A)

—AT(1 +AAT)"1/2
A(1+ATA)712 3)

(A +AAT)1/2

with the operator A = AAn satisfying the nonlinear decou-
pling equation

AMH —[A, H] — AHA)p = 0. @)

Notice that the Okubo unitary transformation leads to nonfac-
torizable and non-renormalizable nuclear potentials [10]. For
the class of contributions considered in this work, renormaliz-
ability of the nuclear potentials can be restored by performing
additional n-space unitary transformations

v = Usz(UOkubo + Ho)Uix — Hy ()
with
Up = exp(a1S1 + 252), (6)

where the anti-Hermitian operators S; and S, are defined in
Eq. (3.25) of [10]. To fix the unitary phases «; and o, we
match the expression for the two-pion exchange two-nucleon
potential obtained from v with Eq. (19) of Ref. [5]. We
reproduce the expression in Eq. (19) of Ref. [5] provided the
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unitary phases «; and o, are chosen to be?

o =—1, a =1 (7)
This particular choice leads to renormalizable nuclear poten-
tials [10] and is employed also by the Bochum-Bonn group.
The leading relativistic corrections to the nuclear forces are
well known to depend on two arbitrary phases Bg, Bo, see Eq.
(1.4) of Ref. [11] for the definition. In Ref. [12], the same
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8 2

off-shell ambiguity is expressed in terms of the phases u, v. To
be consistent with the choice made by the JLab-Pisa group for
the one-pion exchange potential, see Eq. (19) of Ref. [5], we
set v = 0 which corresponds to B3 = v/2 = 0 in our notation.
The second phase needs not be discussed here since we do not
consider relativistic corrections to the g4 vertex.

With the above choices, we arrive at the Fock-space ex-
pressions for the effective potential that correspond to the
convention of the JLab-Pisa group:

®)

€))
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We have retained here the dependence on the phases o,
which should be chosen according to Eq. (7). A comparison
of Egs. (8)—(11) with Eq. (3.13) of [13],® obtained using the
Okubo transformation, shows that both results indeed coin-
cide for the case of @1 = ap = 0 as already pointed out above.
We further emphasize that we have neglected all relativistic
corrections in Eqs. (9)—(11) which scale as 1/mj}, with n > 2
(n > 1) for operators involving two (four) insertions of the
pion-nucleon vertex V. The neglected effects are of a higher
order in the chiral expansion.

We now turn to the axial-vector currents. As in the case of
the nuclear forces, effective current operators can be derived
by inverting the contribution to the 7-matrix 75 that depends
linearly on the corresponding external sources. This in turn
is the approach followed by the JLab-Pisa group to derive
the axial-vector current operator vs, see Eqgs. (3.8)—(3.12) of
[3]. In these equations the operators 75 and G, depend on
the initial- and final-state energies E; and E. The relation be-

2Note that there is a misprint in Eq. (3.31) of [10], a factor of 2 in
front of o, is missing. The corrected equation reads a; = —2a, =
—1/2.

3In Eq. (3.13) of [13], the author discusses the Yukawa model and
not chiral effective field theory. This is, however, perfectly sufficient
for our purpose since we are only interested in the box diagram
contributions. The only vertex which is relevant for the current
discussion of effective potentials is the leading one-pion-nucleon
vertex V which can be interpreted as a Yukawa-type interaction.

(

tween the axial-vector current vs(E; — E;) and the T-matrix
Ts is derived in Appendix A and given by

Ts(Ef, E;) = (1 — vGo(Ef)) " vs(Ef — E) (1 — Go(E;)v) ™"
(12)

Here, we have already exploited the fact that the axial-vector
source appears in first order perturbation theory. The explicit
dependence of the interaction on the axial-vector source is
hidden in vs(E; — E;). Its dependence on the energy differ-
ence E; — E; emerges due to the explicit time-dependence of
axial-vector source.

We now invert Eq. (12) in the same way as done by the
JLab-Pisa group* to obtain the axial-vector current operator
using Egs. (8)—(11) for the strong-interaction potential v. The
resulting somewhat lengthy Fock-space expressions are given
in Appendix B. Notice that exactly the same expressions
are obtained using the method of unitary transformation in
Ref. [2], provided all additional unitary transformations that
depend explicitly on the external axial-vector sources are
switched off, i.e., af* =0 for all i. This demonstrates that
the current operators derived by the two groups should be
unitarily equivalent.

4The explicit energy dependence as given in Eq. (12) is not spelled
out in Egs. (3.8)—(3.12) of [3].
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FIG. 1. Box diagrams proportional to 5. Diagrams obtained by permutation of the nucleon labels 1 <> 2 are not shown. Crossed circles
denote the coupling of axial-vector source ccg,. The momenta [ and I + § in the static pion propagators are explicitly spelled out. Initial (final)
momenta of the nucleons are denoted by p; and p, (p; and p;). The momentum transfer of the nucleon j is defined by ¢; = p; — p; with
j=1,2.

III. CALCULATION OF THE BOX DIAGRAM Fig. 1 gives rise to a series of time-ordered graphs, whose
contributions can be obtained by calculating the two-nucleon
matrix elements of the operators in Eq. (B6). Time-ordered
graphs associated with any of the six diagrams in Fig. 1
feature the same sequence of vertices and thus have the same
spin-isospin-momentum structure which will be given below.
We begin with collecting together the energy denominators
for diagrams (1)—(6) and obtain the following result:

We now use the expressions for vs given in Appendix
B to calculate the contributions of the box diagrams to the
axial-vector current operator, which are visualized in Fig. 1.
While we focus here exclusively on the non-pion-pole contri-
butions, the Fock-space expressions for the pion-pole terms
are also provided in Appendix B. Each diagram shown in

J

box (1) 2 + ( + ! 4 4 + ! 2 2
ox ()= 3 otz 3 - 3 @2 — 7 2 - 2 .
a),a)rﬁ2 2)| wjw; i a)/whqz 4/ wjow; i (wp r + wy) wlwi+q’2 (wy an + w;)
2 2
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oXx(B)=———+{a;+= - oy — — - ,
a)?w7+(72 2 w3 w?wf+(72 4 (,()16()[g+q2 (wf+(72 + wy) wfa);_ﬁz (“)T+¢72 + w;)

I+4>

box (4) =3 >

I wf+172

2 2
box (5) = 3 3 ,

@i I+, @1 %+g,
2
box (6) = ————. (13)
C()[CL)I-+_2

For the choice of the unitary phases «; and a; made by our and by the JLab-Pisa group given in Eq. (7), all terms in the square
brackets vanish leading to the factorized results for every diagrams.

Combining the energy denominators in Eq. (13) with the corresponding spin-isospin-momentum structures, the complete
contribution of the box diagrams to the axial-vector current can be written in the form

_ . ol
box = Z/ W gox(i) + (1 < 2), (14)
i=1

where a is an isospin index and the .Zlgox (i) are given by

Aty = %(2;‘ [t x 1" =3t +2t8) ([ —iG2- 61l - Go x & — (> +1-§2)G> - G
64Fna)l wi+q
2

+q3 - & —T'672672'52] + @il -Gl -Gy x G +1-Go(-6 —1-3) 4+ 12 - 61 + G2 - 32)]
15 P HT-G)G-Gax G+ P +T-G) + [ 3 —PE)+il x (P +1-§)), (15)
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Here, F;, denotes the pion decay constant while c:n (1) are spin (isospin) Pauli matrices of the nucleon i. To further simplify these
expressions, we write the scalar products /> = |I'|> and [ - §, as linear combinations of the corresponding pion energies via
> = a)l M2
[-42=3(l,, —o] —a5)- 1)

After these simplifications we still have to evaluate tensor integrals up to rank three. To this aim, we carry out the standard
Passarino-Veltman reduction in d dimensions:

3d dal 11,1, _ (@2)i8i,i +(92)i,0i i3 + (92)i, 64 i

Q) o off - 8(d — 1)g3

(45 (4M7 + q3)s(ny, na)

— qz[( 4M2)s(n1 —2,m)+ (4M2 + 3q2)s(n1, nm—2)+s(n —4,m)+2s(ng —2,ny —2)
—3s(n,ny — 4] +s(ny — 6, m3) — 3s(ny — 4, ny —2) +3s(ny — 2,ny — 4) — s(ny, ny — 6))

(92)i,(q2)i,(q2)is
8(d — 1)g§

+6dgis(ng —2,ny — 2) — 3dgss(n — 2, ny) — 3dqss(ny, ny —4) + 3dgys(ny, ny — 2)

(=g3s(n1, m)((d + 2)q3 + 12M2) — 3dg3s(ny — 4, ny)
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—(d+2)s(ng —6,m)+3(d+2)s(ng —4,n, —2)—3ds(ny — 2, n, —4) +ds(ny, n, — 6)
— 12M§q§s(n1 —2,m) + 12M§q§s(n1, n, —2)+ 6q§s(n1 —4,m)+ 6q‘21s(n1 —2,m)
—6¢55(n1, ny — 4) + 6g5s(ny, ny — 2) — 6s(ny — 2, n, — 4) + 2s(ny, my — 6)), (22)

sg [ a1 L _ @) (g2,
Qu)l o'l 4d — g3

(@3s(n1, n2)(ds + 4M2) + d[2q3(s(ny — 2, na)

q.

—s(ni,mp —2)) + s(m — 4, m) — 25(ny — 2,my — 2) + s(ny, ny — 4)] — 4gas(ny — 2, m))

8irir
— 17 (@[ (M7 4 g3)s(mn) = 2As(n = 2.ma) + s ma = 2)] + s(u1 — 4, no)
d - 1)
—2s(ny —2,np —2)+ s(ny, ny — 4)), (23)
e / Gy il = —(Z)% (g35(n1, m2) + s(ny — 2, mp) — s(my, my — 2)) (24)

with the scalar integrals defined by

sa [ A 1
d 9
2m) a) aL+

7

s(ni,m)=u (25)

where u denotes the scale of dimensional regularization. The scalar integrals can be further simplified. First, if both of the indices
n; and n, are negative or zero, the function s(n;, n) vanishes in dimensional regularization:

s(ny,n) =0 for n; <0 and n, <0. (26)
Further, the scalar integrals are symmetric
s(ni, np) = s(na, my), (27

as follows trivially from the substitution [ > —— G»- If one of the indices n; or n, equals zero, the tensor integrals can be
simplified to

d?l l' l‘ l' _ dll li, -0 3-d dl lilliZ _ 8i17i2

L — _ _ 2
Qn)? o' ) Q)Y o N Qr)d w)! d (s =2,0) = Mz, ). %)

For negative indices, in particular —5 < ny < 0, we can use Eq. (28) to reduce the indices to zero. The scalar integrals of this
kind needed for this calculation are given by

2
s(4,—4) = ‘;—Z(s(4, 0)(d g3 — 4M7) + 2(d + 2)5(2, 0)), (29)
s(4, =2) = ¢35(4,0) + 5(2,0). (30)
To further reduce the scalar integrals we use the partial integration technique

dir 9 1
77X
2m)e 9] a)l T

=0, 31
I+,

where X represents [ or g». Equation (31) leads to the following reduction formula for the scalar integrals:

1
s(ny, my) = s(ny, ny — 2)(q3(—=2d + 2ny + ny — 2) + 2M*(ny — ny +2)
1,12 (ny — 2)q2(4M2+q)( 1,12 — (qz 1 2 1 2 )
+(n2 = 2)(2M7 + q3)s(my — 2, m2) = 2Mzmys(ny + 2, ny — 4), (32)
(d —ni +2)s(n; —2,0)
,0) = — 33
s(n1.0) o2 (33)
Equations (32) and (33) are used to express all scalar integrals in three dimensions in terms of
M A
2.0 =2 2,2 = A8 (34)
4 2
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where

Aqy) = —— arctan (=22, (35)
2f]2 2M T
Having performed the Passarino-Veltman reduction as described above, the expressions for box-diagrams of Fig. l ind = 3
dimensions simplify to

. g . e
Afox 1y = —SIZ;F“ (2ilt) x 1]* = 3tf + 215){ —A(@2)(45(52 + iG) X &2) + iGa - G2 X Gy)
3

—(3M, +24 IM? +g2) — —F

)51 + Al92)g> - 32672} ; (36)

T1a gf\ a a 2 3{ = 2 =
Aox @ = —51271F7;‘ (272 - Tl) 3My + ¢3A(q2) — —4M]2, n q% 61+ 2q5A(q2)62
Alq2)(8M2 + ¢3) — 2M, M,
+§z<|: - G261 —2A(q2)42 - G2 | ¢ 37
a3 4M2 + g3

7a g 0 L aea oo L L
Ao = 1557 (2il0 x 01 + 3¢ = 26) §A(@:)(43(02 — 161 X 62) — iG> - 524> X 1)
T
3

M
2 2 T - - 5 o
+ <3Mn +2A(g2)(2M; + q3) — m)al —A(q2)q> - 02Q2} , (38)

->

Abox (4) = w(%[ﬁ X 1] + 31f + 215) {A(Clz)(flgﬁz +i6) X 62) + ig - 522 X Gy)

- (3Mn + 2A(q2) (2M2 + ¢3) —

1a gj a a
Ao s) = —5122F4 (278 + ) ( 3M + g3A(q2) —
o
iy <[A<q2>(8M,% +q3) — 2M, M, ]
8 _
7 4AM?2 + g3

3
T - _A P , 39
—4M7.2,+q§>01 (q2)g> 02612} (39)

3
m)al - ZQ§A(612)52
T 2

Gr - 31+ 2A(q2)d2 - 32)} , (40)

1a g5 . a - .o > s o> o -
box (6) = 512#(21[1'1 x 1] =31 — 212) —A(qz)(qg(az — iG] X G2) — iG> - G2Ga X 01)

M3
2 2 T - N N
+ <3Mn +2A(q2)(2M;, + ¢5) — m)dl +A(q2)q2 - 0242} . 41)
Our final result for the sum of all six box diagrams takes the form
e gix 5 5 o= (SMJZI + Q%)A(qZ) —2M; M 5 2 2
Abox = 287 F 73| G2 - 614> p T+ a) 31((8M7 +343)A(q2) + 3My)
+21{ (6205 — G2 - 82672)A(q2)} + (1 < 2) (42)

with g, = |¢,|. This expression coincides with the gi terms in Eqgs. (5.29) and (5.31) of our paper [2] when we set k = 0 to switch
off all pion-pole contributions. The corresponding result of the JLab-Pisa group is given by Eq. (D.4) of the second erratum to

Ref. [3]:
1 - 2 2
<) I of o . _[@1—2)* 1-7z(1-2)
8) = — dzd v (56:M (g2, 2) + L5, -
Js.q(€8) 6471ij/0 Z{Tz( 1M (q2, 7) + 5 01 CI2|: M(ga 2 + M D)
2 2 2 a
g [92(1 —2) =1 ¢g5(z(1 —2)) D o L1 }
+2 - + G xg) X Gt + (1 2 43
2“1[ Mg, 2) M(gs, 2 y @)X ey St e @)
with

M(q2,2) = J2(1 — 2)g3 + M2. (44)
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Compared to the original expression in Ref. [3], we made the replacement ky — G, in Eq. (43) in order to be consistent with our
notation. After performing the integration over z we obtain

2 2
2(1) & P . (8M2 + 43)A(q2) — 2M, M . ) 2
8) = . — — 8M: + 5g5)A M.,
Js.q(€8) 128nF7;‘{T2[q2 Ulqz( p W+ &2 &1( (8M5 +543)A(q2) +
M +41{ (6293 — G2 - 322)A(@2) | + (1 < 2) 45)
- (6295 — G2 - < 2).
a2 —i—q% 102G, — g2 - 0292)A(G2
Comparing Egs. (42) and (45) we see that
Qi # T30 (@8). (46)

Notice that even the nonpolynomial terms proportional to A(q,) disagree with each other. To shed light on the origin of this
disagreement it would be useful to know if the JLab-Pisa group version of the Fock-space expression for axial vector current
agrees with our result in Eq. (B6). Unfortunately, the corresponding expression is not provided by the JLab-Pisa group. If these
expressions would turn out to be identical, one can conclude that our interpretation of the JLab-Pisa group method is correct. In
that case the final expression for the box diagrams of the JLab-Pisa group, given here in Eq. (43), is very likely to be incorrect. On
the other hand, different Fock-space expressions would signal that we have misinterpreted the method of the JLab-Pisa group.
In such a case it would be interesting to see if there exists a similarity transformation that brings the two Fock-space expressions

in agreement with each other. This would ensure that the observed differences are related to off-shell effects.

IV. SUMMARY AND CONCLUSIONS

In this paper we have rederived the non-pion-pole box-
diagram contribution to the two-pion-exchange axial-vector
current operator proportional to g using the approach of the
JLab-Pisa group [3-5]. We have shown at the Fock-space level
that the axial-vector currents, constructed using the method of
unitary transformation [2] and the time-ordered perturbation
theory approach of Ref. [3], are unitary equivalent. The off-
shell conditions employed by the JLab-Pisa group are found
to correspond to the following choice of the unitary phases:

w =1 @7)
in the notation of Ref. [2]. Although the phases o are chosen
differently by our group in order to enforce renormalizability
of the current operators, the two-pion-exchange contributions

proportional to g are unaffected by this choice® and should

J

(

therefore coincide in both approaches. We have presented a
detailed calculation of the box diagrams starting from the cor-
responding Fock-space operators and including intermediate
steps, thereby reproducing our original result from Ref. [2].
While we have not been able to identify the origin of the
disagreement between the two results, see Refs. [2,14], we
hope that our work will help to resolve this issue in the future.
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APPENDIX A: TRANSFER MATRIX WITH TIME-DEPENDENT INTERACTION

In this Appendix we consider the nuclear transfer matrix in the presence of explicitly time-dependent interactions involving

external classical sources. We start with the Schrodinger equation

ot

0
<i = —Ho)l‘l'(t)> =V@O)Iv®).

(AD)

As usual, we introduce a free retarded Green’s function which satisfies

ot

and is given by

G (t —t)=—i0@ —t)exp[—i(Hy —ie)(t —1)].

ad
(i— —HO)G+(I —t)=68(t—-1t) and G (t—t)=0 for t <t

(A2)

(A3)

>The two-pion exchange contributions to the axial current ocgy only depend on the phase «¢*, which has been set to zero in Ref. [2].
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The solution of the Schrodinger equation can be written as

(W) = o)) +/ dt' Go(t =tV )W)

—0Q0

with the state |¢ (7)) satisfying the free Schrodinger equation

.0
<l P Ho>|¢(t)> =0. (AS5)
We now take the Fourier transform of Eq. (A4) by multiplying
both sides with e’£” and integrating over time:

o0
[UH(E)) = 1§(E)) + / drdt’ ' Gt — 1)V ()W),

—00

(A6)

where we have defined

[OH(E)) = / dt 5 Wr @), |P(E))= / dt e®'¢(1)).

o0 o0

(A7)

To simplify Eq. (A6), we Fourier-transform the free Green’s
function G :

o © . o0 . )
GL(E) =/ dtet'G, (1) = _,'/ di e E-Hoiex
- 0

oo
1
S (A8)
E—Hy+ie
The backwards transformations are given by
dE g~
Gi(t)= | s—e " G(E),
2w
dE _. ., -
W (1)) =/2—67’E’|‘I’+(E)> . (A9)
T

Using Eq. (A9), we can rewrite Eq. (A6) into

dE' ot
V(E — ENIVT(E"))
21

(UH(E)) = 1$(E)) + G+(E)/

(A10)

dE’ , ,
77 L(E EDIGED).
T

= |§(E)) + G+(E)/
(Al1)

Equation (A11) defines the transfer matrix in the presence of
an external source. It satisfies the integral equation

T(E,E'y=V(E—E)
dE// ~ 1IN\ P " " /
+/—V(E—E )GL(EDT(E™, E),
2
(A12)

which can also be written in the equivalent form

T(E,E'"Y=V(E —E")

dE” AV II\NY7 " /7
+/ S T(EENGL(EWE"—E).

(A13)

(A4)

[
Rewriting Eq. (A13) into

/ dzi T(E,E"Qn8(E" —E'")— G (E"YW(E" —E)

=V(E—E) (Al4)

and replacing V(E — E’) in Eq. (A10) by left-hand side of
Eq. (A14), we obtain

" - ~ dE' [ dE" ”
[WT(E)) = |¢(E)>+G+(E)/2—/ T(E,E")
T 2

x 2n8(E" —E') — GL(E"W(E" —E))
x I (E). (A15)
Using

dE’ " ’ - 1N\Y7 " ’ \TRad 24
/ oy FS(ET —E) = GLEDV(E" — ED)VT(ED)

= |p(E"))
we indeed obtain Eq. (A11).

As a next step, we decompose the interaction into the time-
dependent and time-independent parts

V(E —E') = 278(E — E')v + vs(E — E'),

(A16)

(A17)

where v denotes the time-independent nuclear potential while
vs is the part of the interaction that depends on the external
axial-vector source. In a similar way, the transfer matrix can

be decomposed as
T(E,E')=2n8(E —Et(E)+ts(E,E'). (Al8)

The off-shell transfer matrix f#(E) satisfies the usual
Lippmann-Schwinger equation

t(E) =v+vG(E)E), (A19)
while the transfer matrix #5 fulfills the integral equation
ts(E,E) = vs(E — E') + VG4 (E)t5(E, E')

+vs (E — E") G (ENt(E")

dE// 4 - " " !
+/ 5 vs(E — E") GL(E")15(E", E'). (A20)

The last term contributes only to processes with at least
two external sources and is, therefore, not considered in our
calculation. Taking into account only processes with at most
a single insertion of the external sources, we obtain for the
transfer matrix

(1 —vG(E))s(E,E')
= vs(E — E")(1 + G.(E'}1(E"))
= v5(E — E")(1 + G(E"W(l — GL(E")v) ™)
=vs(E — E(1 — GL(E")v + GL(E"))(1 — Go(E )~
=vs(E —E"Y(1 — G (E)™! (A21)
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which leads to the final expression
ts(E.E") = (1 —vG(E) 'vs(E — E")(1 — GL(E' ). (A22)

One observes, in particular, that all energies in the operator on the left-hand (right-hand) side of vs5 correspond to the final (initial)
state energies. Last but not least, we emphasize that the derived integral equations also follow from the well-known two-potential
formalism in scattering theory.

APPENDIX B: FOCK-SPACE EXPRESSIONS FOR THE AXIAL-VECTOR OPERATOR

In this Appendix we give the expressions for the axial-vector current operator in Fock space. The corresponding Mathematica
notebook is available upon request from the authors. As explained in Sec. II, the axial-vector current vé") at the chiral order Q"
is obtained following the approach or Refs. [3,4] by inverting Eq. (12) for the transfer matrix. We find the following results at
the first four orders:

1

A A
o = VA 2 vy + He. (B1)
2 w
B )\‘l 1
o = NARE SV = nHonV —Axn + He., (B2)
| Al Al 1 Al 1 ool Al A :
vi = 20HonVE =S Axn — nHynV 5 Azn — SnAvnY SV + S0V —Ay =V — nAE* Vi 4+ nA; ViV —Vy
w w 2 w 2 w w w w w
1 ! A ALz ol 1Al Al A a2 ol
+=nA;—VnV—=Vn—-nA,—V—-V—-Vn+-nV—=VnA,—Vn—-nV—A,—V—Vn+ Hc., (B3)
2 w w? 0w 0 o 27 w? w o 0w o
© 1 Al bt 1 ! 1 Al !
v = ——nHonV —VnAyn + nHonV — Ay —Vn — -nAynHonV —Vn + -nHonV —VnA, —Vn
2 w3 0 T w 2 w? 2 w3 1)
1 1 Al 1 ! Al AL Azl Al Al
+ snHonV —=VnV —Azn + snHonV —AznV —Vn — nHonV — A, —V —Vn + nHonV —VnV —An
2 w w 2 w w w o w w
1 )\‘2 )“1 )\.1 )\‘2 )\-l )\‘1 )\‘1 )\‘] )\‘2 )“1

2 1 2 1 1 1 1 1

Al Al A A 1 A A
—nHonV —V =V —Azn —nHonV —V —V —=Azn+nAz—=VnHonV —Vn + SnAr —VnHonV —Vn
0w W 0w o w w 2 w w
1 Al Al 1Al Al Al Al Al
+ 5nAr —VnHonV — Vi + -0V —=VnHonAz —Vn + nAynVE—Vn —nVE—Ay—Vn
2 w w 2 w w w- w w

Al Al 1 Al Al Al Az ol Al Al
—2MAE—=SVnV —Vn— —nA,E—=VnWV—=Vn+nA,E—=V—V—Vn—nA,—=VnVE—=Vnp
w? w 2 w? w? 0w w w? w?
)\.1 )\'1 )"1 )\2 1 1 )\'2 1 )\'1 1
—NA,—VnpVE—=Vn+nA, —VE—=V—Vn+4+nA,—V—-VE—=Vn—nVE—=SVnA,—Vn
w w3 o 0 w o o w3 w

1 )\-l 1 )\‘l )\‘2 1 )\‘l )\‘2 )\‘l )\‘l )\‘2 )\l
— —nVE—zAnr]V—an + r]VS—zA,T—V—Vn + nVS—zV—Aﬂ—Vn + nV—A,,E—ZV—Vn + H.c.. (B4)
2 w w w w0 w* W w w w* W

Here, A, (Ay o ga) refer to the lowest-order vertices that describe the coupling of the external axial source to a single pion field
(two nucleon fields). In the notation of Ref. [2], Ay and A,; correspond to the Fock-space operators Ag% and AE)TII), respectively.

Since the expressions for vgl)

vg:)), i.e., the terms ocg)y. Further, we distinguish between the pion-pole contributions driven by A, véL? P and the non-pion-pole

(1 ; ; .
terms vy’ associated with Ay:

are rather lengthy, we retain below only those contributions which are relevant for the box diagrams,

1 _ (1) (1)
Ush = Usp,p T Usp, np- (BS)
The expressions for the non-pion-pole contributions have the form

1 )\1 )\,1 )\,1 1 )\’2 )\'1 )\’1 )\’2 )\’1
1)
Vs o = 1| DANDY —VV =V — nAynV —=VnV —Vn | + oo nAnnV —V —V —=Vn —nAynV SV —V—Vy
- P w w? w3 w 0 o o v w

1 2l 1 3 1 1 1 2 a1 Al 1
+ SnANnY VvV —Vn+ onAvnV —=VnV —Vn — SnAynV —V —V —Vn + nAynV —VnV —=Vn
2 w w 8 w w 2 0w w 2 w w
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1 )Ll 2 1 1 )Ll 2
— EnANnV—V—zV—Vn — EnANnV—V—V

Al ol Al Aloal a2
—nV—AN—VnV Vn—i—nV—AN—V —yv—

)\]

1 1 1

1 1 1

1
—nV—=VnV—Ay—Vn
2 w? 0w

| A

1 /\' Az A? A'

~Vnt SV =V Ay—V =V + He. (B6)

These are the operators needed to derive the expression for the axial vector current in Eq. (42) at the vanishing momentum of
the external source. For the sake of completeness, we also give the operators leading the pion-pole contributions:

1 1

1 _
va p

)\'1
l(nAn_
w

1 1 1

A A
+17V—A7,r/V—3V17V—V77 + o nAn—
AL AZ ol

Al Al
—nV —V— V V17A —Vn+nV—A7,nV

1 1 1 1

1
— Az —=VnV—=VnV—Vn— -nA;
1) 1) 1) 2

Az ol Al
+1A; SV —V—=VnV—Vnp
o o w

1 1 )\2 1 1

1 1
+ -nA, —VnV—=-V—-V—-Vn—-nA,;
2 1) 0 0w 2

)\'1 )\,1 )\’2 1 1

A A A A
ViV —=VaV—Vn — nA;,—VnV—
1) w w 1)

A
—VnV—VnV—=Vn+nA,
w? 1) w?
1 Al A A 3 Al A A
— A, —VnV—=VnV—Vn—-nA,—VnV —=VnvV—=Vn
2 1) w3 1) 8 1) w? w?

1
—VnV—VnV—=Vn+ SnA;
1) 1) 1)

)\.2

1 1 1 1

! A A A A
ViV —=Vn — nV—3VnV—V77A,, —Vn
w w w w

132 31 1 12 1
VnV—V—V—Vr/ —nAy,—VnV—V—-V—=Vp
? 1) 0 o ?
Aozl A Al Al
—V— V Vn) — Az VvV —VnV—Vn
w w w

1 1 1 1 )\2 1

—ZVUV—V—V—Vn
W 0w o o

1 1 1 1

1 1

1 )\’l )\’2 1
Zygwiviviyg
2 1) o © w

)\,1 1 )\'1 )\'2 )\'1 )\'1

1 A A
+ A, —VnV—V—-V—=-Vn+nA,—V—=V—-VnV—Vn+nA,—V—-V—=-VnV—Vn
2 w 0 o ? o o w w o o w? w

)\'1 )\'2 1 1 )\‘1 A

1
+ Ay —V—=V—=VnV—=Vn—nA,—V—
2 0o o o w? 0

1 1 1 1

1

1 )\‘l )\‘l )\‘2 )\‘l 1
+5nV —SVnA, —V—V—Vn—
2 w 0 W 8
1 1 )\l )\2 1 1 1
+ 0V VgV —V—A,—Vn+-nV 5V
2w 0w w 2w

1 2 1 1

)\'1

1 A A A 1 A
+ -9V —AnV—=V—-V—-Vn+ -nV—AnV
2 w o v w 2 w

1 1 1

+nV—
a)

)\’2 1 )\’2

1 1 1

+nV=VyV A,
w w

A2l A2

1
— gV ViV VA, =V — —pV ==V A
SV VIV —ViAz —Vi = SV —ViAz —

VIV =V VALY VSV =V VALV VSV o+ He

2 )\l )\'2 )\’1 )\’1 )\’2 )\'3 )\'2 )\‘1
vivivivyonalviviviviyg
w w w w w w w w

1 1
—VnV—er]

1 1 1 Al
—2V17V—V17 — ZnV—er]A,,

1 1 )\‘l )\‘2 )\‘l

3 A A Al I A
nV V17V >V 1Az —Vn—i— nV — Vv A—V Vn

2
1 1 1 1

A2l I A
—Vn—- —nV—AnnV—3V17V—Vn
w 2 w w w

ZvZivnA,
w w

A2 Al Al

)\’1 2 1 )\'1
ZvZivagy vy
w w w

AT A
—V=V—=Vn+nV—A;
0 0 o w

)\1 )\'2 )\,1 1 )\’2 )\'3 )\'2 )\‘1

A,,—V—ZVnV—Vn —nV—A,—V—-V—-V—-Vyp—npV—A,—V—-V—-V—Vp
0w o w 0o v 0w o 0w v 0w o

)\l )\'2 )\'1 1 )\2 )\'3 )\'2 1

B7)

w w W
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