000889263 001__ 889263 000889263 005__ 20240610121038.0 000889263 0247_ $$2doi$$a10.1103/PhysRevLett.125.192502 000889263 0247_ $$2ISSN$$a0031-9007 000889263 0247_ $$2ISSN$$a1079-7114 000889263 0247_ $$2ISSN$$a1092-0145 000889263 0247_ $$2Handle$$a2128/26740 000889263 0247_ $$2altmetric$$aaltmetric:72649251 000889263 0247_ $$2pmid$$a33216564 000889263 0247_ $$2WOS$$aWOS:000600930000001 000889263 037__ $$aFZJ-2021-00168 000889263 082__ $$a530 000889263 1001_ $$0P:(DE-Juel1)159199$$aLu, Bing-Nan$$b0$$eCorresponding author 000889263 245__ $$aAb Initio Nuclear Thermodynamics 000889263 260__ $$aCollege Park, Md.$$bAPS$$c2020 000889263 3367_ $$2DRIVER$$aarticle 000889263 3367_ $$2DataCite$$aOutput Types/Journal article 000889263 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1617694000_23616 000889263 3367_ $$2BibTeX$$aARTICLE 000889263 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000889263 3367_ $$00$$2EndNote$$aJournal Article 000889263 520__ $$aWe propose a new Monte Carlo method called the pinhole trace algorithm for ab initio calculations of the thermodynamics of nuclear systems. For typical simulations of interest, the computational speedup relative to conventional grand-canonical ensemble calculations can be as large as a factor of one thousand. Using a leading-order effective interaction that reproduces the properties of many atomic nuclei and neutron matter to a few percent accuracy, we determine the location of the critical point and the liquid-vapor coexistence line for symmetric nuclear matter with equal numbers of protons and neutrons. We also present the first ab initio study of the density and temperature dependence of nuclear clustering. 000889263 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0 000889263 536__ $$0G:(GEPRIS)196253076$$aDFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076)$$c196253076$$x1 000889263 536__ $$0G:(DE-Juel1)jara0015_20200501$$aNuclear Lattice Simulations (jara0015_20200501)$$cjara0015_20200501$$fNuclear Lattice Simulations$$x2 000889263 588__ $$aDataset connected to CrossRef 000889263 7001_ $$0P:(DE-Juel1)159474$$aLi, Ning$$b1 000889263 7001_ $$00000-0002-7951-1991$$aElhatisari, Serdar$$b2 000889263 7001_ $$0P:(DE-Juel1)156278$$aLee, Dean$$b3$$ufzj 000889263 7001_ $$00000-0002-7412-7165$$aDrut, Joaquín E.$$b4 000889263 7001_ $$0P:(DE-Juel1)145995$$aLähde, Timo A.$$b5 000889263 7001_ $$0P:(DE-Juel1)131142$$aEpelbaum, Evgeny$$b6$$ufzj 000889263 7001_ $$0P:(DE-Juel1)131252$$aMeißner, Ulf-G.$$b7 000889263 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.125.192502$$gVol. 125, no. 19, p. 192502$$n19$$p192502$$tPhysical review letters$$v125$$x1079-7114$$y2020 000889263 8564_ $$uhttps://juser.fz-juelich.de/record/889263/files/1912.05105.pdf$$yOpenAccess 000889263 8564_ $$uhttps://juser.fz-juelich.de/record/889263/files/PhysRevLett.125.192502.pdf$$yOpenAccess 000889263 909CO $$ooai:juser.fz-juelich.de:889263$$pdnbdelivery$$popenaire$$pdriver$$pVDB$$popen_access 000889263 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156278$$aForschungszentrum Jülich$$b3$$kFZJ 000889263 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145995$$aForschungszentrum Jülich$$b5$$kFZJ 000889263 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131142$$aForschungszentrum Jülich$$b6$$kFZJ 000889263 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131252$$aForschungszentrum Jülich$$b7$$kFZJ 000889263 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000889263 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0 000889263 9141_ $$y2020 000889263 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-32 000889263 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-32 000889263 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-08-32 000889263 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-32 000889263 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement 000889263 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2018$$d2020-08-32 000889263 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2018$$d2020-08-32 000889263 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-32 000889263 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-32 000889263 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-32 000889263 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000889263 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2020-08-32 000889263 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-32 000889263 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-32 000889263 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-32$$wger 000889263 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-32 000889263 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x0 000889263 9201_ $$0I:(DE-Juel1)IKP-3-20111104$$kIKP-3$$lTheorie der starken Wechselwirkung$$x1 000889263 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2 000889263 9801_ $$aFullTexts 000889263 980__ $$ajournal 000889263 980__ $$aVDB 000889263 980__ $$aI:(DE-Juel1)IAS-4-20090406 000889263 980__ $$aI:(DE-Juel1)IKP-3-20111104 000889263 980__ $$aI:(DE-82)080012_20140620 000889263 980__ $$aUNRESTRICTED 000889263 981__ $$aI:(DE-Juel1)IAS-4-20090406