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We propose a newMonte Carlo method called the pinhole trace algorithm for ab initio calculations of the
thermodynamics of nuclear systems. For typical simulations of interest, the computational speedup relative
to conventional grand-canonical ensemble calculations can be as large as a factor of one thousand. Using a
leading-order effective interaction that reproduces the properties of many atomic nuclei and neutron matter
to a few percent accuracy, we determine the location of the critical point and the liquid-vapor coexistence
line for symmetric nuclear matter with equal numbers of protons and neutrons. We also present the first
ab initio study of the density and temperature dependence of nuclear clustering.
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In recent years much progress has been made in ab initio
or fully microscopic calculations of the structure of atomic
nuclei [1–6]. These first principles calculations are based
on chiral effective field theory, whereby nuclear inter-
actions are included term by term in order of importance
[7]. Unfortunately, most ab initio methods rely on compu-
tational strategies that are not designed for calculations at
nonzero temperature. One exception is many-body pertur-
bation theory where diagrammatic expansions are used to
calculate bulk thermodynamic properties [8,9]. Another
exception is the method of self-consistent Green’s func-
tions, which provides nonperturbative solutions of the finite
temperature system [10–13]. As with most first principles
methods, however, these approaches have difficulties
describing cluster correlations, which is an important
feature of nuclear multifragmentation and the phase dia-
gram of nuclear matter.
Yet another exception, which we focus on here, is the

method of lattice effective field theory. Lattice effective
field theory has the advantage that nonperturbative effects
such as clustering are reproduced automatically when using
Monte Carlo simulations. Early efforts to describe nuclear
thermodynamics using lattice simulations exist in the
literature [14,15], but there has been little progress since
then. The difficulties stem from the computational cost of
performing grand-canonical calculations of nucleons in
large spatial volumes. One can reduce the effort by working
in a restricted single-particle space [16,17]. Fully unbiased
calculations, however, require a great amount of effort as

they use matrices of size 4V × 4V, where V is the spatial
lattice volume. In this Letter, we report a new paradigm for
calculating ab initio nuclear thermodynamics, which we
call the pinhole trace algorithm. In this algorithm, the
matrices are much smaller, namely of size A × A, where A
is the number of nucleons. The resulting computational
acceleration can be as large as a factor of one thousand.
The ab initio calculations presented here use the pinhole

trace algorithm to implement nuclear lattice effective field
theory [18,19] at finite temperature. At fixed nucleon
number A, and temperature T, the expectation value of
any observable O is

hOiβ ¼
ZOðβÞ
ZðβÞ ¼ TrAðe−βHOÞ

TrAðe−βHÞ
; ð1Þ

where ZðβÞ is the canonical partition function, β ¼ T−1 is
the inverse temperature, H is the Hamiltonian, and TrA is
the trace over the A-nucleon states. Throughout, we use
units where ℏ ¼ c ¼ kB ¼ 1.
The canonical partition function ZðβÞ can be written

explicitly in the single-particle basis as

ZðβÞ ¼
X

c1;…;cA

hc1;…; cAj expð−βHÞjc1;…; cAi; ð2Þ

where the basis states are Slater determinants composed of
point particles, ci ¼ ðni; σi; τiÞ are the quantum numbers of
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the ith particle, with ni an integer triplet specifying the
lattice coordinate, σi is the spin, and τi is the isospin. On the
lattice, the components of ni take integer values from 0 to
L − 1, where L is the box length in units of the lattice
spacing. The neutron number N and proton number Z are
separately conserved, and the summation in Eq. (2) is
limited to the subspace with the specified values for N
and Z.
In Supplemental Material [20] we present the full details

of the lattice calculations. To explain the basic design of our
computational approach, we illustrate here a simplified
calculation where the Hamiltonian has a two-body contact
interaction

H ¼ Hfree þ
1

2
C
X
n

∶ ρ2ðnÞ∶; ð3Þ

where Hfree is the free nucleon Hamiltonian with nucleon
mass m ¼ 938.9 MeV, ρðnÞ ¼ P

σ;τ â
†
n;σ;τân;σ;τ is the den-

sity operator. The ∶∶ symbols indicate normal ordering
where the annihilation operators are on the right and
creation operators are on the left. We assume an attractive
interaction with C < 0.
The imaginary time direction, whose length is set by the

inverse temperature β, is divided into Lt slices with time
lattice spacing at such that β ¼ Ltat. For each time slice the
two-body interaction is decomposed using an auxiliary-
field transformation such that at each lattice site we
have

exp

�
−
atC
2

ρ2
�

¼
ffiffiffiffiffiffi
1

2π

r Z
ds exp

�
−
s2

2
þ

ffiffiffiffiffiffiffiffiffiffiffi
−atC

p
sρ

�
;

ð4Þ

where s is the auxiliary field.
Putting these pieces together, we obtain the (auxiliary-

field) path-integral expression for Eq. (2)

ZðβÞ ¼
X

c1;…;cA

Z
Ds1 � � �DsLt

hc1;…; cAj

× MðsLt
Þ � � �Mðs1Þjc1;…; cAi; ð5Þ

where

MðsntÞ≕ exp

�
−atK þ

ffiffiffiffiffiffiffiffiffiffiffi
−atC

p X
n

sntðnÞρðnÞ
�
∶ ð6Þ

is the normal-ordered transfer matrix for time step nt, and
snt is our shorthand for all auxiliary fields at that time step
[18,19]. K ¼ −∇2=2M is the kinetic energy operator,
which is discretized using finite difference formulae
[18]. For a given configuration snt , the transfer matrix
MðsntÞ consists of a string of one-body operators which are

directly applied to each single-particle wave function in the
Slater determinant. For notational convenience, we will use
the abbreviations c⃗ ¼ fc1;…; cAg and s⃗ ¼ fs1;…; sLt

g.
The pinhole trace algorithm (PTA) was inspired by the

pinhole algorithm used to sample the spatial positions and
spin-isospin of the nucleons [38]. However, the purpose,
implementation, and underlying physics of the PTA for
nuclear thermodynamics are vastly different from the
original pinhole algorithm used for density distributions.
In the PTAwe evaluate Eq. (5) using Monte Carlo methods,
i.e., importance sampling is used to generate an ensembleΩ
of fs⃗; c⃗g of configurations according to the relative
probability distribution

Pðs⃗; c⃗Þ ¼ jhc⃗jMðsLt
Þ � � �Mðs1Þjc⃗ij: ð7Þ

The expectation value of any operator Ô can be expressed
as

hÔi ¼ hMOðs⃗; c⃗ÞiΩ=hM1ðs⃗; c⃗ÞiΩ; ð8Þ

where

MOðs⃗; c⃗Þ ¼ hc⃗jMðsLt
Þ � � �MðsLt=2þ1ÞÔ

× MðsLt=2Þ � � �Mðs1Þjc⃗i=Pðs⃗; c⃗Þ: ð9Þ

To generate the ensemble Ω we use the Metropolis
algorithm to update s⃗ and c⃗ alternately. We first fix the
nucleon configuration c⃗ and update the auxiliary fields s⃗.
Starting from the rightmost time slice s1, we update
s1;…; sLt

successively, as detailed in Supplemental
Material [20].
After updating s⃗, we then update the nucleon configu-

ration c⃗. To that end, we randomly choose a nucleon i and
move it to one of its neighboring sites

ci ¼ fni; σi; τig → c0i ¼ fn0i; σi; τig; ð10Þ

or flip its spin,

ci ¼ fni; σi; τig → c0i ¼ fni;−σi; τig: ð11Þ

The corresponding new nucleon configuration c⃗0 is
accepted if

Pðs⃗; c⃗0Þ=Pðs⃗; c⃗Þ > r0 ð12Þ

with 0 ≤ r0 < 1 a random number. Because in the c⃗ update
only one nucleon is moved or spin flipped at a time, the
successive configurations are correlated. Only when all
nucleons have been updated do we obtain statistically
independent configurations. For calculations described
here, we found that about 16c⃗ updates for every s⃗ update
produced the optimal sampling efficiency.
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At low temperatures the signal in Eq. (2) may be
overwhelmed by stochastic noise due to the notorious sign
problem, i.e., to the almost complete cancellation between
positive and negative amplitudes. In auxiliary-field simu-
lations with attractive pairing interactions, the sign problem
is held in check by pairing symmetries. For the case of spin
pairing, this means that for any nucleon with quantum
numbers ðn; σ; τÞ, we can find another nucleon with
ðn;−σ; τÞ. As the transfer matrix in Eq. (6) is spin
independent, the pairing symmetry is preserved irrespective
of the auxiliary fields. A similar pairing symmetry also
holds for isospin pairing, with τ and −τ. These pairing
symmetries produce single-nucleon amplitude matrices
with eigenvalues that come in complex conjugate pairs,
such that the corresponding matrix determinants remain
positive.
In the PTA, the nucleon positions and indices are allowed

to explore unpaired configurations and could spoil the
protection from sign oscillations provided by pairing
symmetries. Indeed, this possibility is one reason why
the method had not been considered earlier, and why grand-
canonical calculations have instead been used for the
thermodynamics of nuclear systems as well as ultracold
atoms [39,40]. Fortunately, we find that this issue is not
realized here. For all temperatures considered in this Letter,
we find that the sign problem is rather mild, as the positive
sign configurations have stronger amplitudes due to the
attractive pairing interactions. However, the sign problem
will eventually reemerge for temperatures very low com-
pared to the Fermi energy. For interactions without pairing
symmetries, the sign problem will be far more severe and
appear even in auxiliary-field Monte Carlo calculations
without pinholes.
For the values of A, V, and Lt of interest in this work, the

computational scaling of the PTA is A2VLt, while that for
the grand-canonical algorithm described in Ref. [41] is
AV2Lt. Details of the computational scaling analysis can be
found in Supplemental Material [20]. The cost savings of
the PTA is a factor of V=A, and the speed up factor
associated with the PTA will be as large as one thousand,
depending on the lattice spacing and particle density.
Next, we discuss the measurement of the observables.

While the energies and density correlation functions can be
directly measured by inserting the corresponding operators
in the middle time step as in Eq. (8), we still need to design
efficient algorithms for computing intensive variables, e.g.,
chemical potential μ or pressure p. This contrasts with
grand-canonical ensemble calculations where the chemical
potential is given as an external constraint.
In classical thermodynamics simulations, the Widom

insertion method (WIM) [42] is used to determine the
statistical mechanical properties [43,44]. In the WIM we
freeze the motion of the molecules and insert a test particle
to the system and measure the free-energy difference,
from which the chemical potential can be determined.

The advantage of the WIM is that we do not need the total
free energy, which would require an evaluation of the
partition function. In the PTA we encounter a similar
problem. The absolute free energy can only be inferred
with an integration of the energy from absolute zero, which
induces large uncertainties. To solve this problem, we adapt
the WIM to the quantum lattice simulations, with the test
particles substituted by fermionic particles or holes in the
system.
For every configuration c⃗ generated in the PTA, we

calculate the expectation values associated with adding one
nucleon or removing one nucleon. We define

B1 ¼
X
c0
hc⃗ ∪ c0jMðsntÞ � � �Mðs1Þjc⃗ ∪ c0i=Pðs⃗; c⃗Þ;

B−1 ¼
X
i

hc⃗ncijMðsntÞ � � �Mðs1Þjc⃗ncii=Pðs⃗; c⃗Þ; ð13Þ

where the summation over c0 runs over all single-particle
quantum numbers and the summation over i runs over all
existing particles. Pðs⃗; c⃗Þ is the probability given in Eq. (7).
The extra free energy of inserting or removing one particle
is given by

FðA� 1Þ − FðAÞ ¼ −T ln

� hB�1iΩ
ðA� 1Þ!

�
: ð14Þ

Using the symmetric difference, we have

μ ¼ ½FðAþ 1Þ − FðA − 1Þ�=2 ¼ T
2
ln

�
AðAþ 1Þ hB−1iΩ

hB1iΩ

�
:

ð15Þ

In the PTA the summations in Eq. (13) can be calculated
using random sampling. For B1 we insert a nucleon with
random spin and location and propagate it through all time
slices, while for B−1 we simply remove one of the existing
nucleon. As only one particle is inserted or removed in each
measurement, we find this algorithm very efficient and
precise in calculating the chemical potential μ. Sub-
sequently, we determine the pressure p by integrating the
Gibbs-Duhem equation, dp ¼ ρdμ, starting from the vac-
uum with p ¼ 0, ρ ¼ 0.
As the long-range Coulomb interaction is ill defined in

the thermodynamic limit without screening, it is standard
practice to remove the Coulomb force from nuclear matter
calculations. We note that in actual heavy-ion collisions the
Coulomb interaction can be important, and so the com-
parison with Coulomb-removed nuclear matter is not
entirely straightforward. We first focus on the nuclear
equation of state at nonzero temperatures, which is impor-
tant for describing the evolution and dynamics of core-
collapse supernovae [45], neutron star cooling [46], neutron
star mergers [47], and heavy-ion collisions [48]. We then
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consider nuclear clustering as a function of density and
temperature.
In this work we perform simulations on L3 ¼ 43; 53; 63

cubic lattice with up to 144 nucleons and a spatial lattice
spacing a ¼ 1=150 MeV−1 ≈ 1.32 fm, such that the corre-
sponding momentum cutoff is Λ ¼ π=a ≈ 471 MeV. The
temporal lattice spacing is taken to be at ¼ 1=2000 MeV−1.
For these calculations we use the pionless effective field
theory Hamiltonian introduced in Ref. [49], consisting of
two- and three-body contact interactions which reproduce
the binding energy and charge distribution of many light and
medium-mass nuclei. While this is a simple leading-order
theory and the results are only a first step towards higher-
order calculations in chiral effective field theory, our sim-
plified calculation has the important dual purpose of making
our discussion of the PTA accessible to a broader audience
for potential applications to the thermodynamics of con-
densed matter systems and ultracold atoms.
We impose twisted boundary conditions along the

coordinate directions, which means that each nucleon
momentum component pi must equal θi=Lþ 2πni=L for
our chosen twist angle θi and some integer ni. As detailed
in Supplemental Material [20], we average each observable
over all possible twist angles by Monte Carlo sampling. As
others have found [50–52], twist averaging significantly
accelerates the convergence to the thermodynamic limit.
In Fig. 1 we present the calculated chemical potential and

pressure isotherms for L3 ¼ 63. Each point represents a
separate simulation. The temperature T covers the range
from 10 to 20 MeV and densities from 0.0080 fm−3 to
0.20 fm−3. The statistical errors are very small, less than
0.02 MeV for μ and less than 0.002 MeV=fm3 for p. These
are too small to be clearly visible in Fig. 1 and are not
shown. The liquid-vapor coexistence line is determined
through the Maxwell construction of each isotherm and
depicted as a solid black line in Fig. 1. The liquid-vapor
critical point is then located by solving the equations
dμ=dρ ¼ d2μ=dρ2 ¼ 0. The same process is applied to
the data for L ¼ 43 and L ¼ 53 in order to estimate the
error associated with extrapolation to the thermodynamic
limit.
In Table I we present the calculated critical temperature

Tc, density ρc, and critical pressure Pc. The first error bar
represents the combined uncertainty from statistics and
extrapolation to the thermodynamic limit. The second error
bar is the estimated systematic uncertainty associated with
the contribution of omitted higher-order interactions. For
completeness we also present the saturation density ρsat at
T ¼ 0 MeV and the saturation energy per nucleon Esat=A.
We compare our results with the perturbative calculations
using N3LO chiral interactions [53] with two different
momentum cutoffs. There appears to be a significant
amount of dependence on the momentum cutoff, and the
difference gives a rough estimate of the corresponding
uncertainties. In the last column we present the empirical

values deduced from the heavy-ion collision experi-
ments [54].
We note that while the empirical ρsat extracted from

heavy-ion collisions is about 25% lower than the standard

FIG. 1. Upper panel: the μ-ρ isotherms of symmetric nuclear
matter computed on the lattice with L3 ¼ 63. The numbers on the
lines are temperatures in MeV, and the temperature difference
between adjacent isotherms is 1 MeV. The black line denotes the
liquid-vapor coexistence line derived fromMaxwell construction,
and the red star marks the calculated critical point. Lower panel:
the p-ρ isotherms of symmetric nuclear matter are shown for
L3 ¼ 63. The black line denotes the liquid-vapor coexistence line,
and the red star marks the calculated critical point. The cyan
rectangle marks the empirical critical point extracted from heavy-
ion collisions [54].

TABLE I. The calculated critical temperature Tc, pressure Pc,
density ρc, saturation density ρsat, and energy per nucleon Esat=A.
For comparison we also present the results of perturbative
calculations using N3LO chiral potentials, “n3lo414” and
“n3lo500” correspond to cutoff momentum Λ ¼ 414 and
500 MeV, respectively [53]. “Exp.” denotes the empirical values
inferred from the cluster distributions in the multifragmentation
experiments [54].

This work n3lo414 n3lo500 Exp.

Tc (MeV) 15.80(0.32)(1.60) 17.4 19.1 17.9(4)
Pc (MeV=fm3) 0.260(05)(30) 0.33 0.42 0.31(7)
ρc (fm−3) 0.089(04)(18) 0.066 0.072 0.06(1)
ρsat (fm−3) 0.205(08)(40) 0.171 0.174 0.132
Esat=A (MeV) −16.9ð0.3Þð1.7Þ −15.79 −16.51
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value of 0.17 fm−3 and our lattice ρsat is about 25% higher
than 0.17 fm−3, the ratios for ρc=ρsat for the two cases are in
agreement with each other and also in agreement with the
two N3LO chiral results. This is consistent with the general
expectation that small systematic errors in the density can
be reduced by computing ratios of densities.
Nuclear clustering is another important phenomenon

essential to our understanding of the phase diagram of
nuclear matter and multifragmentation in heavy-ion colli-
sions [55]. Here, we present the first study of nuclear
clustering in a fully ab initio thermodynamics calculation.
Nuclear clustering is a manifestation of strong many-body
correlations which goes well beyond mean-field theory, and
thus is very difficult to reproduce using most ab initio
methods. In Fig. 2 we show the expectation values of the
four-body density h∶ρ4∶i for different temperatures. To
build a dimensionless observable, we scale the results by
the nucleon density hρi to the fourth power. The resulting
quantity κ is a sensitive indicator of the degree of four-body
clustering or alpha clustering. Here, we present the results
for three different nucleon densities, which correspond to
0.6, 1.0, and 1.6 times the critical density ρc. For subcritical
density ρ ¼ 0.6ρc the system is a plasma of small clusters
and we found κ ≫ 1. As the temperature increases the
clusters begin to disintegrate and κ decreases. For the
critical density ρ ¼ ρc and supercritical density ρ ¼ 1.6ρc,
we found negligible alpha clustering with κ < 1. Here, the
thermal motion and small interparticle spacing overwhelm
the tendency for clustering in such hot and dense environ-
ments. In this regime we find that alpha clustering is a
monotonically decreasing function of the nucleon density,
but does not depend on the temperature. Since nuclear
clustering is very difficult to probe using other ab initio
methods, it would be extremely interesting and useful to
build upon this first study and investigate the density and

temperature dependence of nuclear clustering in more
detail with the PTA and high-quality chiral nuclear forces.
Future work will improve upon these calculations by

including higher-order interactions in lattice effective field
theory. With the pinhole trace algorithm, many exciting
applications are possible based on first principles calcu-
lations of quantum many-body systems at nonzero temper-
ature. This includes studies of superfluidity in symmetric
and asymmetric nuclear matter, neutrino interactions in
warm nuclear matter and supernova explosions, the proper-
ties of neutron stars and neutron star mergers, the temper-
ature and density dependence of nuclear clusters, and
extensions to other quantum many-body systems such as
ultracold atoms and molecules.
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