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Abstract. The triple-alpha process, whereby evolved stars create carbon and oxygen, is believed to be
fine-tuned to a high degree. Such fine-tuning is suggested by the unusually strong temperature dependence
of the triple-alpha reaction rate at stellar temperatures. This sensitivity is due to the resonant character
of the triple-alpha process, which proceeds through the so-called “Hoyle state” of 12C with spin-parity 0+.
The question of fine-tuning can be studied within the ab initio framework of nuclear lattice effective field
theory, which makes it possible to relate ad hoc changes in the energy of the Hoyle state to changes in the
fundamental parameters of the nuclear Hamiltonian, which are the light quark mass mq and the electro-
magnetic fine-structure constant. Here, we update the effective field theory calculation of the sensitivity
of the triple-alpha process to small changes in the fundamental parameters. In particular, we consider
recent high-precision lattice QCD calculations of the nucleon axial coupling gA, as well as new and more
comprehensive results from stellar simulations of the production of carbon and oxygen. While the updated
stellar simulations allow for much larger ad hoc shifts in the Hoyle state energy than previously thought,
recent lattice QCD results for the nucleon S-wave singlet and triplet scattering lengths now disfavor the
scenario of no fine-tuning in the light quark mass mq.

PACS. 21.10.Dr – 21.30.-x – 21.45.-v – 21.60.De – 26.20.Fj

1 Introduction

The production of carbon and heavier elements in stars
is complicated by the instability of the 8Be nucleus. The
way this bottleneck is circumvented in nature is by means
of the triple-alpha process, where the production rate of
12C is strongly enhanced by a fortuitously placed 0+ res-
onance, known as the Hoyle state [1]. As small ad hoc
changes in the excitation energy of the Hoyle state rela-
tive to the triple-alpha threshold can lead to large changes
in the relative abundance of carbon and oxygen, the ques-
tion arises whether the universe should be regarded as
fine-tuned with respect to the likelihood of carbon-oxygen
based life to arise, for a recent review on fine-tunings
see [2]. The physics of the triple-alpha process has re-
cently been studied using nuclear lattice effective field the-
ory (NLEFT). The ground state energies of 4He, 8Be and
12C, and of the energy of the Hoyle state in 12C, were
all found to be strongly correlated with respect to small
changes in the fundamental constants of nature, an effect
of the clustering of alpha particles in the respective nu-
clei. We review here how the sensitivity of the triple-alpha
reaction rate with respect to small changes in the light

quark mass and the electromagnetic fine-structure con-
stant is treated in the effective field theory (EFT) frame-
work. The main source of uncertainty is due to the short-
range part of the nucleon-nucleon interaction, and we dis-
cuss recent progress in narrowing down this uncertainty
using updated theoretical knowledge of the quark mass
dependence of the two-nucleon S-wave scattering parame-
ters, including the results of recent lattice QCD work. We
also contrast this theoretical treatment with recent high-
precision calculations of stellar nucleosynthesis, which find
that the allowable range of Hoyle state energies is larger
than previously thought [3].

This paper is structured as follows. In Sec. 2 we update
the pion (quark) mass dependence of the nuclear Hamil-
tonian, which is central for the following discussion. In
Sec. 3 we review the current status of stellar nucleosynthe-
sis calculations, with focus on the resulting abundances of
carbon and oxygen under ad hoc shifts in the Hoyle state
resonance. In particular, we pay attention to recent new
results in this field. In Sec. 4, we revisit the theoretical
status of EFT calculations of the sensitivity of the Hoyle
state energy to small changes in the light quark mass mq
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and the electromagnetic fine-structure constant αem. Fi-
nally, in Sec. 5 we discuss how the EFT treatment of the
triple-alpha process could be improved with regards to re-
cent progress in the nuclear lattice EFT description of the
nuclear forces.

2 Quark mass dependence of the nuclear
Hamiltonian

The ground-state energies and spectra of light and medium-
mass nuclei can be calculated to a good precision in the
framework of NLEFT, as described in detail in the mono-
graph [4]. Variations of the fundamendat parameters like
the average light quark mass or the electromagnetic fine-
structure constant can also be investigated within this ap-
proach. In what follows, we update our knowledge of the
quark mass dependence of the nuclear Hamiltonian, which
is central to the study of fine-tunings in the triple-alpha
process. Note that to high accuracy the Gell-Mann-Oakes-
Renner relation M2

π ∼ mq, with mq = (mu + md)/2 the
average light quark mass, is fulfilled in QCD and we thus
can use the notions “quark mass dependence” and “pion
mass dependence” synonymously. This update concerns
in particular the hadronic parameters x1 and x2 and the
nuclear parameters Ās and Āt. For details, the reader is
referred to Refs. [5,6,4].

We first discuss x1, which describes the dependence of
the nucleon mass mN on the pion mass Mπ. This is related
to the pion-nucleon σ-term σπN , via

x1 = 2
σπN
Mπ

, (1)

and we note that the best determinations of σπN are from
the recent Roy-Steiner-equation analyses of pion-nucleon
scattering, leading to σπN = (59.1 ± 3.5) MeV [7] (with
the inclusion of pionic hydrogen and deuterium data) and
σπN = (58 ± 5) MeV [8] (pion-nucleon scattering data
only). We take the central value of Ref. [7] and the un-
certainty of Ref. [8], to be on the conservative side. While
this gives

x1 = 0.84(7), (2)

we note that lattice QCD determinations give systemati-
cally smaller values for σπN and thus x1. For reasons ex-
plained in Ref. [9], such as the inconsistency of the lattice
QCD values with the precisely determined S-wave pion-
nucleon scattering lengths, we do not consider the lattice
QCD results here.

Next, we turn to x2, which describes the dependence
of the strength of the one-pion exchange (OPE) gA/(2Fπ)
on Mπ. This is given by

x2 =
1

2Fπ

∂gA
∂Mπ

∣∣∣∣
Mph

π

− gA
2F 2

π

∂Fπ
∂Mπ

∣∣∣∣
Mph

π

, (3)

with Mph
π denoting the physical value of the pion mass.

Noe that x2 turned out to be small and of indeterminate
sign in Ref. [6]. This was largely due to the inconclusive

situation of lattice QCD calculations of gA. Such prob-
lems have recently been overcome by high-precision lattice
QCD calculations with close-to-physical quark masses [10].
In particular, consistent values of gA with minimal model
dependence were obtained for a range of polynomial and
chiral perturbation theory (ChPT) extrapolations in Mπ.
In order to make use of the analysis of Ref. [10], we define

∂gA
∂Mπ

≡ ∂gA
∂M∗

∂M∗
∂Mπ

, (4)

where

M∗ ≡
Mπ

4πFπ
, (5)

and
∂M∗
∂Mπ

=
1

4πFπ

(
1− Mπ

Fπ

∂Fπ
∂Mπ

)
, (6)

in terms of which

gA = 1.273(19),
∂gA
∂M∗

∣∣∣∣
Mph

π

= −0.08(24), (7)

were obtained from an extrapolation using the complete
NNLO chiral expression, with and without inclusion of the
N3LO contact terms [11]. It should be noted that unlike
the determination of gA itself, the value of ∂gA/∂M∗ does
depend significantly on the choice of extrapolation of the
lattice QCD data. For instance, significantly larger values
can be obtained by means of linear or quadratic extrap-
olations in M∗. However, we shall here rely on the chiral
NNLO result (7), in particular as it was found to show
good convergence of the chiral expansion [10].

The dependence of Fπ on Mπ was not yet obtained in
Ref. [10]. We recall that Ref. [12] provided

∂Fπ
∂Mπ

∣∣∣∣
Mph

π

= 0.066(16), (8)

which was used in Ref. [6]. This should be compared with
the sub-leading order ChPT result

∂Fπ
∂Mπ

=
Mπ

8π2F
¯̀
4, (9)

where F ' 86.2 MeV denotes Fπ in the chiral limit, and
¯̀
4 = 4.3(3) from the review [13]. We note that Eq. (9)

gives a number comparable with (though slightly larger
than) Eq. (8). These values are also consistent with the
most recent FLAG lattice QCD determination [14].

Using the isospin-averaged pion massMπ = 138.03 MeV
and Fπ = 92.1 MeV, we find

∂M∗
∂Mπ

∣∣∣∣
Mph

π

= 0.078(2) l.u., (10)

from Eq. (6), for an inverse spatial lattice spacing of a−1 ≡
100 MeV. So far, from Eq. (3) and (8), we have

x2 = −0.050(12) l.u.+
1

2Fπ

∂gA
∂Mπ

∣∣∣∣
Mph

π

, (11)
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where we can now use the chiral lattice QCD extrapola-
tions (7) together with Eq. (10). This gives

∂gA
∂Mπ

∣∣∣∣
Mph

π

= −0.006(19) l.u., (12)

such that we finally obtain

x2 = −0.053(16) l.u., (13)

from Eq. (3), which is compatible with the range x2 =
−0.056 . . . 0.008 l.u. used in Ref. [6]. However, in contrast
to the earlier determination of x2, we can now pin it down
with a definite sign up to ' 3.3σ.

Having fixed the hadronic input parameters, we now
consider the leading order four-nucleon contact interac-
tions that can be mapped on the derivatives of the inverse
singlet and triplet neutron-proton scattering lengths,

Ās,t =
∂a−1

s,t

∂Mπ

∣∣∣∣
Mph

π

. (14)

Earlier, modelling based on resonance saturation [15] was
used to get a handle on these quantities, as discussed in
detail in Ref. [12]. Here, we attempt to fix Ās,t from avail-
able lattice QCD data, which should be the method of
choice. Before doing so, some words of caution are in or-
der. The situation with lattice QCD simulations in the
nucleon-nucleon (NN) sector is at present highly contro-
versial. Fully dynamical simulations at unphysically heavy
pion masses, carried out by the NPLQCD Collaboration
and Yamazaki et al. and based on the standard approach
to extract the ground state energy by fitting plateaus of
the correlation functions find more attraction in both the
1S0 and 3S1 channels at heavy pion masses than for phys-
ical pion masses, see [16,17,18,19,20]. These results con-
tradict the findings of the HAL QCD Collaboration using
a (scheme-dependent) potential at the intermediate stage
of extracting NN observables. This group finds no bound
states in both S-wave channels for pion masses ranging
from 469 to 1171 MeV [21]. The HAL QCD Collaboration
has already carried out simulations at the physical point,
but the results for the nonstrange channels have, as far as
we know, not been released yet. The HAL QCD Colalbora-
tion has criticized the direct method by pointing out the
danger of observing fake plateaus [22,23], see, however,
the response of the NPLQCD Collaboration in Ref. [24].
The HAL QCD approach has also been criticized e.g. in
Refs. [25,26]. The weakest point of this method seems to
be its reliance on the derivative expansion, whose conver-
gence is not clear a priori. Interestingly, the recent lattice
QCD study in the strangeness S = −2 two-baryon sector
by the CERN-Mainz group [27] using a superior distilla-
tion method finds for Mπ = 960 MeV the H-dibaryon en-
ergy perfectly consistent with HAL QCD, but in a strong
disagreement with the NPLQCD result.

Recently, in Ref. [28] the use of low-energy theorems
(LETs) to reconstruct the energy dependence of the NN
scattering amplitude in a large kinematical domain from
a single observable (e.g. binding energy, scattering length,

effective range) at a given fixed value of the pion mass
was proposed. The method relies on the dominance of the
one-pion exchange (OPE) at large distances, which gov-
erns the near-threshold energy dependence of the scatter-
ing amplitude. At the physical point, LETs are known to
work accurately in the 3S1 channel in line with the strong
tensor interaction induced by the OPE, while less accu-
rately in the 1S0 partial wave, where the OPE potential
is very weak [29]. Notice that this approach employs the
lattice QCD results to determine the strength of the OPE
potential at unphysical values of Mπ and does not rely
on the chiral expansion. At heavy pion masses Mπ ∼Mρ,
the LETs loose their predictive power, and the approach
becomes equivalent to the effective range expansion. In
[28], the LETs were used to test the linear interpolation of
Mπr as function of Mπ between Mph

π and Mπ ' 800 MeV
conjectured by the NPLQCD Collaboration [19]. These
study was restricted to the 3S1 channel. The assumed lin-
ear interpolation was indeed found to be consistent with
the available lattice QCD results for the deuteron binding
energy obtained using the plateau method, see Fig. 6 of
Ref. [28]. In [30] the LETs were applied to test the consis-
tency between the bound state energies and phase shifts
obtained using the Lüscher method by the NPLQCD Col-
laboration at Mπ = 450 MeV [18] in both the 1S0 and 3S1

channels. It was found that the NPLQCD phase shifts
are inconsistent with their own results for the deuteron
and dineutron energies. The inconsistency was later re-
emphasized by the HAL QCD Collaboration using the ef-
fective range expansion [22,23].

With these drawbacks and inconsistencies in mind, we
nevertheless go forward and analyze the available lattice-
QCD results for the deuteron and dineutron binding en-
ergy of Refs. [16,17,18,19,20], which seem to be mutually
consistent, in order to extract the quantities Ās and Āt.
The best way to extract Ās,t is to use the LETs to com-
pute the inverse scattering lengths from the binding ener-
gies at the corresponding values of Mπ, and to perform a
subsequent interpolation. In table 1, we collect the bind-
ing energies of the deuteron and dineutron states from the
calculations of Refs. [17,16,18,20] and the resulting values
of the inverse scattering lengths. In addition to these re-
sults, we also include the direct NPLQCD determination
of the scattering lengths at Mπ ' 806 MeV from Ref. [19]

a−1
t = 0.549(59)fm−1, a−1

s = 0.429(54)fm−1. (15)

To perform the interpolation between these five points and
the experimental values of the inverse scattering lengths,
see Fig. 1, we use a simple quadratic ansatz

a−1
s,t (Mπ) = (aphs,t)

−1 + a(Mπ −Mph
π ) + b(Mπ −Mph

π )2,

(16)

where the coefficients a, b are determined from a least
square fit to the available values of a−1

s,t at heavier-than-
physical pion masses. The results of the fits are shown
by the solid (black) lines in Fig. 1. With χ2/NDOF = 4.3
and 2.4 in the singlet and triplet channels, respectively,
the quality of the fit is not really good. Using a third-
degree polynomial leads to the results shown by the dotted
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Table 1. Available lattice QCD results for the deuteron and dineutron binding energies obtained from the plateau method
along with the resulting values of the inverse scattering lengths calculated from the LETs at NLO. The uncertainties in the
energies are taken from the correponding papers. The first error of a−1

s,t reflects the uncertainty of the lattice results for the
binding energies used as input (for Mπ = 300, 390 and 510 MeV, the different lattice errors for the binding energies have been
added in quadrature), while the second one corresponds to the uncertainty of the LETs estimated as explained in Ref. [30].

Mπ = 300 MeV [17] Mπ = 390 MeV [16] Mπ = 450 MeV [18] Mπ = 510 MeV [20]

The 3S1 channel
Bd [MeV] 14.5(0.7)(+2.4

−0.8) 11(05)(12) 14.4(+3.2
−2.6) 11.5(1.1)(0.6)

a−1
t [fm−1] 0.422(+0.024

−0.011)(+0.008
−0.006) 0.400(+0.119

−0.400)(+0.018
−0.011) 0.448(+0.031

−0.029)(+0.042
−0.093) 0.419(+0.015

−0.016)(+0.077
−0.019)

The 1S0 channel
Bnn [MeV] 8.5(0.7)(+1.6

−0.5) 7.1(5.2)(7.3) 12.5(+3.0
−5.0) 7.4(1.3)(0.6)

a−1
s [fm−1] 0.335(+0.023

−0.013)(+0.009
−0.006) 0.324(+0.106

−0.324)(+0.019
−0.009) 0.324(+0.030

−0.064)(+0.055
−0.019) 0.337(+0.021

−0.025)(+0.183
−0.016)
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Fig. 1. Pion mass dependence of the inverse scattering lengths a−1
s,t as predicted by lattice-QCD calculations of Refs. [17,16,18,

20,19]. Black squares show the experimental values at the physical point. Black solid and blue dashed lines are the quadratic
and cubic interpolations.

(blue) lines, but the χ2/NDOF well below 1 indicates over-
fitting. The large values of χ2/NDOF with a quadratic fit
are likely due to underestimated error bars of lattice-QCD
results, especially the ones from [17] at Mπ = 300 MeV.
In any case, we obtain Ās = 0.54 and Āt = 0.33 based
on the quadratic interpolation. The cubic extrapolation
yields Ās = 0.78 and Āt = 0.49, and we take the difference
as an estimation of the uncertainty in Ās,t. To summarize,
the various available determinations of Ās,t are:

The original estimation in Refs. [6,12]:

Ās = 0.29+0.25
−0.23, Āt = −0.18+0.10

−0.10, (17)

LO chiral EFT of Ref. [31]:

Ās = 0.50(23), Āt = −0.12(08), (18)

Interpolation of lattice QCD data of Refs. [16,17,18,19,20]:

Ās = 0.54(24), Āt = 0.33(16). (19)

The LO chiral EFT result in Eq. (18) corresponds to an
renormalizable expression for the the scattering amplitude
with the static one-pion exchange, and the uncertainty is
estimated from the cutoff variation from Λ = 600 MeV
to infinity. The positive sign of Āt in Eq. (19) is consis-

tent with a stronger attraction in the deuteron channel
at heavy Mπ. HAL QCD results would presumably yield
a negative value of Āt. In what follows, we will use the
values collected in Eq. (19).

3 The Hoyle state in stellar nucleosynthesis

The stellar synthesis of elements heavier than 4He is com-
plicated by the fact that no stable nucleus exists for A = 8,
at least for the physical values of the fundamental con-
stants. In the absence of stable 8Be nuclei, helium fu-
sion instead takes place through the triple-alpha reaction
3(4He) → 12C + γ, which requires a number of interme-
diate steps. The first step is 4He + 4He ↔ 8Be, whereby
a transient equilibrium population of 8Be is maintained
in the stellar core. It should be noted that the unstable
8Be resonance decays back into two alpha particles with a
half-life of ∼ 10−16 s. The reaction rate for the formation
of 8Be is controlled by the energy difference

∆Eb ≡ E8 − 2E4, (20)



Timo A. Lähde et al.: An update on fine-tunings in the triple-alpha process 5

where E4 and E8 denote the ground states of 4He and 8Be,
respectively. Though 8Be is short-lived, a sufficiently large
transient 8Be population in stellar cores is formed to allow
for the second step 8Be + 4He → 12C in the triple-alpha
process.

In stellar cores composed primarily of helium, the non-
resonant reaction proceeds too slowly to explain the ob-
served abundances of carbon and oxygen in the universe.
However, as the 12C nucleus possesses an excited 12C(0+2 )
state (known as the Hoyle state) with an empirical excita-
tion energy of 7.6444 MeV, the reaction can also proceed
in a resonant manner, which greatly enhances the triple-
alpha reaction rate. We define

∆Eh ≡ E?12 − E8 − E4, (21)

which controls the reaction rate for the second step 8Be
+ 4He ↔ 12C(0+2 ), where E?12 is the (total) energy of the
Hoyle state resonance. The energy scale ER which controls
the resonant triple-alpha reaction is then

ER ≡ ∆Eb +∆Eh = E?12 − 3E4, (22)

which is empirically known (in our universe) to be Eph
R =

379.47(18) keV. Note that this is much smaller than the
binding energies of the nuclei participating in the triple-
alpha reaction, which are' 28 MeV for 4He and' 92 MeV
for 12C.

For a stellar plasma at temperature T , the reaction
rate r3α for fusion of three alpha particles via the ground
state of 8Be and the Hoyle state of 12C is

r3α = 3
3
2N3

α

(
2π~2

|E4|kBT

)3 Γγ
~

exp

(
− ER
kBT

)
, (23)

where Nα is the number density of alpha particles, and
kB is the Boltzmann constant. It should be noted how
the exponential dependence on ER and T−1 arises, as the
observation that the rate of stellar carbon production is
exponentially sensitive to ER is central to the anthropic
picture of the triple-alpha process, for discussions on this
issue see [32,33]. For non-resonant reactions, the corre-
sponding factor is given by the convolution of Coulomb
barrier penetration with a thermal distribution of particle
velocities, which gives a ∼ T−1/3 dependence on temper-
ature. For resonant reactions a fixed energy is singled out,
in this case given by Eq. (22), which leads to the exponen-
tial dependence of Eq. (23). It should be noted that ER
is clearly the dominant control parameter of the triple-
alpha process, in comparison with the linear dependence
on the radiative width Γγ ' 0.0037 eV of the Hoyle state.
Still, Γγ should be sufficiently large to allow for the ra-
diative decay of the Hoyle state to be competitive with
fragmentation into 8Be and 4He. The radiative decay pro-
ceeds either through 12C(0+2 ) → 12C(0+1 ) + γ, or 12C(0+2 )
→ 12C(2+1 ) + γ, after which the 12C(2+1 ) decays to the
ground state 12C(0+1 ) by emission of a second photon. In
practice, this two-step E2 process is more efficient than
the direct M0 decay, which is highly suppressed. Inter-
estingly, the channel 12C(0+2 ) → 12C(2+1 ) + γ is strongly

enhanced compared to the single-particle Weisskopf rate
(often referred to as “strongly collective behavior”), which
is correctly predicted by recent lattice EFT calculations.

We define
δER ≡ ER − E

ph
R , (24)

when the energy of the Hoyle state is shifted from its phys-
ical value. Clearly, for δER > 0 (the Hoyle state energy
is increased), the rate of carbon production (at constant
stellar temperature T ) is decreased. In order to generate
sufficient energy to counteract gravitation, the stellar core
must increase T in order to compensate for the reduc-
tion in r3α. It should be noted that the production of 12C
via the triple-alpha reaction competes with the destruc-
tion of 12C by the formation of 16O through 12C+4He →
16O+γ, such that even a small change in T could lead
to a C/O abundance which is very different from that
observed. However, the 16O nucleus has a state with ex-
citation energy 7.1187 MeV, which is below the threshold
energy of the 12C+4He system, which is 7.1616 MeV above
the ground state of 16O. Hence, the formation of 16O is
a non-resonant process, which nevertheless depends sensi-
tively on T because of the sizeable Coulomb barrier.

On a phenomenological level, a variation of ER thus
leads to a change in the relative importance of the compet-
itive processes by which 12C is produced, and destroyed
by further processing into 16O (and heavier alpha nuclei).
Hence, for a sufficiently large positive δER, a regime is en-
countered in which little 12C and 16O remains after stellar
nucleosynthesis, with most material having been processed
into 24Mg and 28Si. Conversely, for negative δER, stellar
core temperatures during helium burning are substantially
lower, leading to end products with plentiful 12C but rela-
tively little 16O. However, the latter point turns out to be
sensitive to the initial stellar metallicity. Also, when the
Hoyle state energy is lowered (δER < 0), one should also
consider the sensitivity

ΞT ≡
T

r3α

dr3α
dT

= −3 +
ER
kBT

, (25)

where the stability of the star requires that the triple-
alpha reaction rate (and hence the energy production) in-
crease as T increase, such that ΞT > 0. Hence, ER should
satisfy

ER > 3kBT, (26)

which places a lower bound on the permissible values of
the Hoyle state energy. However, as stellar cores have
roughly kBT ' 10 keV during helium burning, this bound
is an order to magnitude smaller than the observed value
of ER ' 380 keV.

Recently, comprehensive simulations of stellar nucle-
osynthesis in massive stars that eventually explode as su-
pernovae have become available [3]. These studies follow
stars ranging from 15 to 40 solar masses up to the stage
where a degenerate iron core is formed. The yields of var-
ious isotopes are then weighted according to the stellar
mass distribution function, taken to be dN/dM� ∝M−2.3

�
(for the range of stellar masses M� considered), which ac-
counts for the relative scarcity of heavier stars. For the
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stellar metallicity, Ref. [3] considered two cases. Firstly,
the low-metallicity simulations used Z = 10−4, which is
representative of the currently known stars with the low-
est observed metallicity. Secondly, the case of Z = Zsun

was studied, where Zsun = 0.02 denotes the observed so-
lar metallicity. The main effect of Z is to alter the relative
importance of the p-p chain and the CNO cycle, such that
stars can enter the helium burning phase with different
configurations.

We are now in a position to summarize the findings of
Ref. [3] for the range in δER, for which the final abun-
dances of 12C and 16O exceed their initial values. These
can be expressed as

δE
(−)
R ≤ δER ≤ δE

(+)
R , (27)

where the boundaries for each nucleus depend on the cho-
sen initial stellar metallicity. For Z = 10−4 (low metallic-
ity), the ranges compatible with carbon-oxygen based life
are

12C(Z = 10−4) : −300 keV ≤ δER ≤ 500 keV, (28)

and

16O(Z = 10−4) : −300 keV ≤ δER ≤ 300 keV, (29)

where for negative δER, sufficient 12C and 16O were pro-
duced for all values of the Hoyle state energy compatible
with the constraint (26). For Z = 0.02 (solar metallicity),
the corresponding ranges were found to be significantly
narrower. Specifically,

12C(Z = 0.02) : −300 keV ≤ δER ≤ 160 keV, (30)

and

16O(Z = 0.02) : −150 keV ≤ δER ≤ 200 keV, (31)

where significant carbon production could still be main-
tained for all negative δER. In stars of solar metallicity,
the production of 16O appears to be the limiting factor, as
it is only possible in a roughly symmetric (though rather
broad) envelope centered on the physical value of ER.

Previously, the stellar simulations of Refs. [34,35] indi-
cated that sufficient abundances of both carbon and oxy-
gen are only possible for δER ' ±100 keV around the
empirical value ER = 379.47(18) keV. From the present
results, we conclude that the energy of the Hoyle state is
likely to be less fine-tuned than previously thought. How-
ever, if the Hoyle state is raised by more than ' 300 keV,
the generation of sufficient oxygen would encounter diffi-
culties. Were the Hoyle state located more than ' 500 keV
above its physical energy, the universe would also be un-
likely to contain a sufficient amount of carbon.

4 Sensitivity to small changes in the
fundamental parameters

We shall now update the ranges of variation of the light
quark mass δmq and the fine-structure constant δαem,

which are compatible with the formation of sufficient amounts
of carbon and oxygen in our universe, and thus with the
existence of carbon-oxygen based life. As in Ref. [6], we
express the shift in the Hoyle state δER as

δER ≈
∂ER
∂Mπ

∣∣∣∣
Mph

π

δMπ +
∂ER
∂αem

∣∣∣∣
αph

em

δαem (32)

≡ Qq(ER)

(
δmq

mq

)
+Qem(ER)

(
δαem

αem

)
,

for |δmq/mq| � 1 and |δαem/αem| � 1. We shall first
consider the effects of varying mq, for which we have

Qq(ER) ≡ ∂ER
∂Mπ

∣∣∣∣
Mph

π

Kq
Mπ
Mπ, (33)

and we recall that Kq
Mπ

= 0.494+0.009
−0.013 [12]. As in the

NLEFT calculation of Ref. [6], we find

∂ER
∂Mπ

∣∣∣∣
Mph

π

= −0.572(19) Ās − 0.933(15) Āt + 0.068(7),

(34)

where the only change from Ref. [6] is in the constant term,
which has been recalculated using the updated values of x1
and x2. The numbers in parentheses denote Monte Carlo
uncertainties, and as in Ref. [6], the relatively small ad-
ditional errors due to the uncertainties of x1 and x2 have
been neglected. As such uncertainties are much reduced
here, this simplification is better justified.

The boundaries of the envelope where a sufficient abun-
dance of carbon or oxygen is maintained are then

δE
(−)
R ≤ Qq(ER)

(
δmq

mq

)
≤ δE(+)

R , (35)

where the earlier stellar nucleosynthesis calculations of

Refs. [34,35] indicated an overall bound of |δE(−)
R |= |δE

(+)
R |

= 100 keV from ad hoc variations of the Hoyle state en-
ergy. The present situation is slightly more involved, as
the upper and lower boundaries are not symmetric, and
moreover the boundaries for 12C and 16O are different,
an additional factor being the (initial) metallicity of the
star under consideration. On the one hand, for ER to not
increase beyond the permissible range, we require that

− 0.572(19) Ās − 0.933(15) Āt + 0.068(7)

≤
δE

(+)
R

Kq
Mπ
Mπ

( |δmq|
mq

)−1

, δmq > 0, (36)

for positive shifts in mq such that δmq → |δmq|, and

− 0.572(19) Ās − 0.933(15) Āt + 0.068(7)

≥ −
δE

(+)
R

Kq
Mπ
Mπ

( |δmq|
mq

)−1

, δmq < 0, (37)

for negative shifts in mq such that δmq → −|δmq|. On the
other hand, for ER to not decrease too much, we should
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Fig. 2. “Survivability plots” based on the stellar simulations of [34,35] (Oberhummer et al., bottom right plot) and [3,2] (all
other plots). The data points with horizontal and vertical error bars indicate estimates of where our universe is located. On
the solid black lines, ER (and hence the triple-alpha reaction) is independent of variations in mq. The dot-dashed black lines

correspond to the equalities (36) and (37), which mark the upper bound δE
(+)
R for |δmq|/mq = 1%. Similarly, the dotted black

lines correspond to the equalities (38) and (39), which mark the lower bound δE
(−)
R . For the case of 12C and Z = 0.02, both

δmq > 0 and δmq < 0 are given, for the other cases only δmq > 0 is shown.

have

− 0.572(19) Ās − 0.933(15) Āt + 0.068(7)

≥
δE

(−)
R

Kq
Mπ
Mπ

( |δmq|
mq

)−1

, δmq > 0, (38)

for positive shifts in mq, and

− 0.572(19) Ās − 0.933(15) Āt + 0.068(7)

≤ −
δE

(−)
R

Kq
Mπ
Mπ

( |δmq|
mq

)−1

, δmq < 0, (39)

for negative shifts in mq. Hence, the values of Ās and Āt
compatible with a given variation in mq are given by the
regions enclosed by Eqs. (36) and (38) for δmq > 0, and
by Eqs. (37) and (39) for δmq < 0.

The constraints on Ās and Āt due to the conditions (36)
through (39) are illustrated by the shaded bands in Fig. 2.
These bands cover the values of Ās and Āt consistent with
the ability of stars to produce 12C and 16O, when mq is
varied by 0.5%, 1% and 5%. As an example, given the
boundaries for 12C production in stars with solar metal-
licity (Z = 0.02), the interpolated lattice QCD result is
compatible with a ' 0.8% increase in mq, beyond which
ER is decreased too much. Conversely, beyond a ' 0.4%



8 Timo A. Lähde et al.: An update on fine-tunings in the triple-alpha process

decrease in mq, ER is increased too much. For stars with
solar metallicity, the production of 16O is clearly the most
heavily constraining factor, although low-metallicity stars
(Z = 10−4) allow for much greater variation of mq. This
value of the metallicity corresponds to the metal-poorest
stars observed in the universe. In such metal-poor stars,
the chiral EFT determinations of Ās and Āt suggest that
changes of ∼ 5% in mq are permissible. However, from the
interpolated lattice QCD results, the allowed range in mq

is strongly reduced to a mere ' 0.8%, largely because of
the positive value of Āt.

Finally, we note that the effect of shifts in the electro-
magnetic fine-structure constant lead to the constraint

|δαem|
αem

≤ |δER|
Qem(ER)

, (40)

where Qem(ER) = 3.99(9) MeV was determined in the
NLEFT calculation of Ref. [6]. With the bound |δER| =
100 keV [34,35], this is compatible with a ' 2.5% shift in
αem. With the much more relaxed bound |δER| = 300 keV
due to the production of 16O in stars with Z = 10−4, this
tolerance is significantly increased to ' 7.5%.

5 Discussion

We have reconsidered the sensitivity of the triple-alpha
process with respect to shifts in the fundamental parame-
ters of nature, especially the light quark mass mq and the
electromagnetic fine-structure constant αem. Our knowl-
edge of the quark-mass dependence of the hadronic pa-
rameters in the nuclear Hamiltonian has improved sig-
nificantly, in particular with respect to the nucleon axial-
vector coupling gA. There, new lattice QCD data allow for
an accurate chiral extrapolation which shows good conver-
gence. Much more detailed predictions of the effects of ad
hoc variation of the position of the Hoyle state resonance
on the stellar yields of 12C and 16O have also become
available. These show that the production of 16O in low-
metallicity stars is likely to be the limiting factor, although
the bounds on carbon-oxygen based life have in general be-
come much less stringent. At the same time, much more
lattice QCD data on the singlet and triplet S-wave nucleon
scattering lengths at unphysical quark masses have been
produced. The current lattice QCD data appear to exclude
the no-fine-tuning scenario, to the extent that a relatively
small ' 0.5% shift in mq would eliminate carbon-oxygen
based life from the universe. On the other hand, such life
could possibly persist up to ' 7.5% shifts in αem. Clearly,
more reliable lattice QCD data at close-to-physical pion
masses are required to overcome the remaining uncertain-
ties discussed in detail in Sec. 2.

While we have here mostly focused on updating the
nuclear, hadronic and astrophysical inputs to the EFT
calculation of the fine-tuning of the triple-alpha process,
it is also of interest to perform improved 12C simulations
in NLEFT. Apart from effects of smearing of the LO op-
erators, the EFT calculation of the triple-alpha process is

essentially a LO calculation. Extending this to higher or-
ders would require much more detailed information on the
nuclear force at unphysical pion masses, for higher orders
in the EFT expansion. However, as modern NLEFT po-
tentials, see e.g. [36], use a combination of local and non-
local smearing at LO, the description of 12C including the
Hoyle state is nevertheless expected to be improved.
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