000889278 001__ 889278
000889278 005__ 20240712113053.0
000889278 0247_ $$2doi$$a10.1149/1945-7111/abda59
000889278 0247_ $$2ISSN$$a0013-4651
000889278 0247_ $$2ISSN$$a0096-4743
000889278 0247_ $$2ISSN$$a0096-4786
000889278 0247_ $$2ISSN$$a1945-6859
000889278 0247_ $$2ISSN$$a1945-7111
000889278 0247_ $$2ISSN$$a2002-2015
000889278 0247_ $$2ISSN$$a2156-7395
000889278 0247_ $$2Handle$$a2128/28320
000889278 0247_ $$2altmetric$$aaltmetric:97761221
000889278 0247_ $$2WOS$$aWOS:000612842100001
000889278 037__ $$aFZJ-2021-00183
000889278 082__ $$a660
000889278 1001_ $$0P:(DE-Juel1)180325$$aBuchheit, Annika$$b0
000889278 245__ $$aCharacterization of the Particle-Polymer Interface in Dual-Phase Electrolytes by Kelvin Probe Force Microscopy
000889278 260__ $$aBristol$$bIOP Publishing$$c2021
000889278 3367_ $$2DRIVER$$aarticle
000889278 3367_ $$2DataCite$$aOutput Types/Journal article
000889278 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1638970024_15940
000889278 3367_ $$2BibTeX$$aARTICLE
000889278 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889278 3367_ $$00$$2EndNote$$aJournal Article
000889278 520__ $$aIn this study, the possibility to characterize the electrochemical characteristics of the particle-polymer interface in dual-phase electrolytes by measuring the contact potential difference with high local resolution is demonstrated. Two different polymer electrolytes, polyethylene oxide (PEO) and poly[bis-2-(2-methoxyethoxy)-ethoxyphosphazene] (MEEP), were investigated in combination with lithium ion conductive Li7La3Zr2O12 (LLZ) particles and two different mixed ionic-electronic conductive ceramic particles: uncoated and carbon coated LiFePO4 (LFP) as typical cathode material and uncoated Li4Ti5O12 as typical anode material. A distinct Volta potential gradient between the particles and the polymer was observable in all cases, except when no lithium salt was present within the polymer matrix. The measured potential gradients can be explained in terms of a contact potential between the polymer electrolyte and the ceramic electrolyte. A more negatively charged space charge layer around LFP particles in PEO matrix and around LLZ particles in MEEP can be explained by enrichment of salt anions in direct vicinity of the particle.Electrochemical characterization with impedance spectroscopy showed an increased conductivity for addition of LFP for PEO while the addition of various particles in different concentrations showed no effect on the conductivity of MEEP. The lithium transference number was unaffected by particle addition for all samples.
000889278 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000889278 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x1
000889278 588__ $$aDataset connected to CrossRef
000889278 7001_ $$0P:(DE-HGF)0$$aHoffmeyer, Marija$$b1
000889278 7001_ $$0P:(DE-HGF)0$$aTeßmer, Britta$$b2
000889278 7001_ $$0P:(DE-Juel1)181017$$aNeuhaus, Kerstin$$b3$$eCorresponding author
000889278 773__ $$0PERI:(DE-600)2002179-3$$a10.1149/1945-7111/abda59$$n1$$p010531$$tJournal of the Electrochemical Society$$v168$$x1945-7111$$y2021
000889278 8564_ $$uhttps://juser.fz-juelich.de/record/889278/files/Buchheit_2021_J._Electrochem._Soc._168_010531-1.pdf$$yOpenAccess
000889278 8767_ $$d2021-12-30$$eHybrid-OA$$jPublish and Read
000889278 909CO $$ooai:juser.fz-juelich.de:889278$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
000889278 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180325$$aForschungszentrum Jülich$$b0$$kFZJ
000889278 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)181017$$aForschungszentrum Jülich$$b3$$kFZJ
000889278 9130_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000889278 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000889278 9141_ $$y2021
000889278 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-05
000889278 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-05
000889278 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-09-05
000889278 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000889278 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-05
000889278 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-05
000889278 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-05
000889278 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-05
000889278 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000889278 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ELECTROCHEM SOC : 2018$$d2020-09-05
000889278 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-05
000889278 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-05
000889278 920__ $$lyes
000889278 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000889278 9801_ $$aFullTexts
000889278 980__ $$ajournal
000889278 980__ $$aVDB
000889278 980__ $$aI:(DE-Juel1)IEK-12-20141217
000889278 980__ $$aUNRESTRICTED
000889278 980__ $$aAPC
000889278 981__ $$aI:(DE-Juel1)IMD-4-20141217