001     889280
005     20240313103116.0
024 7 _ |a 10.1145/3381755.3381769
|2 doi
024 7 _ |a 2128/26744
|2 Handle
037 _ _ |a FZJ-2021-00185
041 _ _ |a English
100 1 _ |a Bouhadjar, Younes
|0 P:(DE-Juel1)176778
|b 0
|e Corresponding author
111 2 _ |a Neuro-inspired Computational Elements Workshop
|g NICE
|c Heidelberg
|d 2020-03-17 - 2020-03-20
|w Germany
245 _ _ |a The speed of sequence processing in biological neuronal networks
260 _ _ |c 2020
300 _ _ |a 1-3
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1610462411_23480
|2 PUB:(DE-HGF)
520 _ _ |a Sequence processing has been proposed to be the universal computation performed by the neocortex. The Hierarchical Temporal Memory (HTM) model provides a mechanistic implementation of this form of processing. While the model accounts for a number of neocortical features, it is based on networks of highly abstract neuron and synapse models updated in discrete time. Here, we reformulate the model in terms of a network of spiking neurons with continuous-time dynamics to investigate how neuronal and synaptic parameters constrain the sequence-processing speed.
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 0
536 _ _ |a Advanced Computing Architectures (aca_20190115)
|0 G:(DE-Juel1)aca_20190115
|c aca_20190115
|f Advanced Computing Architectures
|x 1
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|f H2020-SGA-FETFLAG-HBP-2017
|x 2
536 _ _ |a PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)
|0 G:(DE-Juel1)PHD-NO-GRANT-20170405
|c PHD-NO-GRANT-20170405
|x 3
700 1 _ |a Diesmann, Markus
|0 P:(DE-Juel1)144174
|b 1
700 1 _ |a Wouters, Dirk J.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Tetzlaff, Tom
|0 P:(DE-Juel1)145211
|b 3
773 _ _ |a 10.1145/3381755.3381769
856 4 _ |u https://juser.fz-juelich.de/record/889280/files/extended_abstract.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:889280
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176778
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)144174
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145211
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Theory, modelling and simulation
|x 0
914 1 _ |y 2020
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 2
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 3
920 1 _ |0 I:(DE-Juel1)PGI-10-20170113
|k PGI-10
|l JARA Institut Green IT
|x 4
980 1 _ |a FullTexts
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-Juel1)PGI-10-20170113
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21