000889300 001__ 889300
000889300 005__ 20211113141656.0
000889300 0247_ $$2doi$$a10.1063/5.0036024
000889300 0247_ $$2ISSN$$a0021-8979
000889300 0247_ $$2ISSN$$a0148-6349
000889300 0247_ $$2ISSN$$a1089-7550
000889300 0247_ $$2ISSN$$a1520-8850
000889300 0247_ $$2ISSN$$a2163-5102
000889300 0247_ $$2Handle$$a2128/26709
000889300 0247_ $$2WOS$$aWOS:000608037800004
000889300 037__ $$aFZJ-2021-00192
000889300 082__ $$a530
000889300 1001_ $$00000-0003-0399-1869$$aMueller, Michael P.$$b0$$eCorresponding author
000889300 245__ $$aThe importance of singly charged oxygen vacancies for electrical conduction in monoclinic HfO 2
000889300 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2021
000889300 3367_ $$2DRIVER$$aarticle
000889300 3367_ $$2DataCite$$aOutput Types/Journal article
000889300 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1636723361_21149
000889300 3367_ $$2BibTeX$$aARTICLE
000889300 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889300 3367_ $$00$$2EndNote$$aJournal Article
000889300 520__ $$aThe point-defect structure of monoclinic HfO2 (m-HfO2) was studied by means of equilibrium electrical conductance measurements as a function of temperature 1050≤T/K≤1200 and oxygen partial pressure −20≤log(pO2/bar)≤−2. The total conductivity σ displayed similar behavior at each temperature examined. In oxidizing conditions (pO2≥10−7bar), the total conductivity increased with increasing oxygen partial pressure and was assigned to hole conduction. Around 10−10 bar, a region of almost constant conductivity was found; this is ascribed to ionic conduction by means of doubly charged oxygen vacancies. In reducing conditions (pO2≤10−16bar), the total conductivity surprisingly decreased with decreasing oxygen partial pressure. Defect-chemical modeling indicates that this behavior is consistent with the conversion of mobile doubly charged oxygen vacancies into less mobile singly charged vacancies by electron trapping. Point-defect concentrations at the oxygen partial pressures relevant to resistive switching devices are predicted and discussed.
000889300 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000889300 588__ $$aDataset connected to CrossRef
000889300 7001_ $$0P:(DE-Juel1)130677$$aGunkel, Felix$$b1
000889300 7001_ $$0P:(DE-Juel1)130717$$aHoffmann-Eifert, Susanne$$b2
000889300 7001_ $$00000-0001-7721-4128$$aDe Souza, Roger A.$$b3
000889300 773__ $$0PERI:(DE-600)1476463-5$$a10.1063/5.0036024$$gVol. 129, no. 2, p. 025104 -$$n2$$p025104 -$$tJournal of applied physics$$v129$$x1089-7550$$y2021
000889300 8564_ $$uhttps://juser.fz-juelich.de/record/889300/files/5.0036024.pdf$$yPublished on 2021-01-08. Available in OpenAccess from 2022-01-08.
000889300 8564_ $$uhttps://juser.fz-juelich.de/record/889300/files/hfo2_defects_manuscript_rev.pdf$$yPublished on 2021-01-08. Available in OpenAccess from 2022-01-08.
000889300 909CO $$ooai:juser.fz-juelich.de:889300$$pdnbdelivery$$pdriver$$popen_access$$popenaire$$pVDB
000889300 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130677$$aForschungszentrum Jülich$$b1$$kFZJ
000889300 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130717$$aForschungszentrum Jülich$$b2$$kFZJ
000889300 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000889300 9141_ $$y2021
000889300 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-29
000889300 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-29
000889300 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-08-29
000889300 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-29
000889300 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000889300 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-29
000889300 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-29
000889300 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-29
000889300 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-29
000889300 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-08-29$$wger
000889300 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-29
000889300 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-08-29
000889300 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-29$$wger
000889300 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-29
000889300 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000889300 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x1
000889300 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000889300 980__ $$ajournal
000889300 980__ $$aVDB
000889300 980__ $$aI:(DE-Juel1)PGI-7-20110106
000889300 980__ $$aI:(DE-Juel1)PGI-10-20170113
000889300 980__ $$aI:(DE-82)080009_20140620
000889300 980__ $$aUNRESTRICTED
000889300 9801_ $$aFullTexts