Hauptseite > Publikationsdatenbank > The importance of singly charged oxygen vacancies for electrical conduction in monoclinic HfO 2 > print |
001 | 889300 | ||
005 | 20211113141656.0 | ||
024 | 7 | _ | |a 10.1063/5.0036024 |2 doi |
024 | 7 | _ | |a 0021-8979 |2 ISSN |
024 | 7 | _ | |a 0148-6349 |2 ISSN |
024 | 7 | _ | |a 1089-7550 |2 ISSN |
024 | 7 | _ | |a 1520-8850 |2 ISSN |
024 | 7 | _ | |a 2163-5102 |2 ISSN |
024 | 7 | _ | |a 2128/26709 |2 Handle |
024 | 7 | _ | |a WOS:000608037800004 |2 WOS |
037 | _ | _ | |a FZJ-2021-00192 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Mueller, Michael P. |0 0000-0003-0399-1869 |b 0 |e Corresponding author |
245 | _ | _ | |a The importance of singly charged oxygen vacancies for electrical conduction in monoclinic HfO 2 |
260 | _ | _ | |a Melville, NY |c 2021 |b American Inst. of Physics |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1636723361_21149 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The point-defect structure of monoclinic HfO2 (m-HfO2) was studied by means of equilibrium electrical conductance measurements as a function of temperature 1050≤T/K≤1200 and oxygen partial pressure −20≤log(pO2/bar)≤−2. The total conductivity σ displayed similar behavior at each temperature examined. In oxidizing conditions (pO2≥10−7bar), the total conductivity increased with increasing oxygen partial pressure and was assigned to hole conduction. Around 10−10 bar, a region of almost constant conductivity was found; this is ascribed to ionic conduction by means of doubly charged oxygen vacancies. In reducing conditions (pO2≤10−16bar), the total conductivity surprisingly decreased with decreasing oxygen partial pressure. Defect-chemical modeling indicates that this behavior is consistent with the conversion of mobile doubly charged oxygen vacancies into less mobile singly charged vacancies by electron trapping. Point-defect concentrations at the oxygen partial pressures relevant to resistive switching devices are predicted and discussed. |
536 | _ | _ | |a 5233 - Memristive Materials and Devices (POF4-523) |0 G:(DE-HGF)POF4-5233 |c POF4-523 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Gunkel, Felix |0 P:(DE-Juel1)130677 |b 1 |
700 | 1 | _ | |a Hoffmann-Eifert, Susanne |0 P:(DE-Juel1)130717 |b 2 |
700 | 1 | _ | |a De Souza, Roger A. |0 0000-0001-7721-4128 |b 3 |
773 | _ | _ | |a 10.1063/5.0036024 |g Vol. 129, no. 2, p. 025104 - |0 PERI:(DE-600)1476463-5 |n 2 |p 025104 - |t Journal of applied physics |v 129 |y 2021 |x 1089-7550 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/889300/files/5.0036024.pdf |y Published on 2021-01-08. Available in OpenAccess from 2022-01-08. |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/889300/files/hfo2_defects_manuscript_rev.pdf |y Published on 2021-01-08. Available in OpenAccess from 2022-01-08. |
909 | C | O | |o oai:juser.fz-juelich.de:889300 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)130677 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)130717 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5233 |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2020-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2020-08-29 |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-08-29 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-08-29 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2020-08-29 |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2020-08-29 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2020-08-29 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-08-29 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-08-29 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-7-20110106 |k PGI-7 |l Elektronische Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-10-20170113 |k PGI-10 |l JARA Institut Green IT |x 1 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)PGI-7-20110106 |
980 | _ | _ | |a I:(DE-Juel1)PGI-10-20170113 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|