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ABSTRACT 
 
Background: Mood disorders represent a major cause of morbidity and mortality worldwide but 

the brain-related molecular pathophysiology in mood disorders remains largely undefined.  

Methods: Because the anterior insula is reduced in volume in patients with mood disorders, 

RNA was extracted from postmortem mood disorder samples and compared with unaffected 

control samples for RNA-sequencing identification of differentially expressed genes (DEGs) in 

a) bipolar disorder (BD; n=37) versus (vs.) controls (n=33), and b) major depressive disorder 

(MDD n=30) vs controls, and c) low vs. high Axis-I comorbidity (a measure of cumulative 

psychiatric disease burden). Given the regulatory role of transcription factors (TFs) in gene 

expression via specific-DNA-binding domains (motifs), we used JASPAR TF binding database 

to identify TF-motifs. 

Results: We found that DEGs in BD vs. controls, MDD vs. controls, and high vs. low Axis-I 

comorbidity were associated with TF-motifs that are known to regulate expression of toll-like 

receptor genes, cellular homeostatic-control genes, and genes involved in embryonic, 

cellular/organ and brain development. 

Discussion: Robust imaging-guided transcriptomics (i.e., using meta-analytic imaging results to 

guide independent post-mortem dissection for RNA-sequencing) was applied by targeting the 

gray matter volume reduction in the anterior insula in mood disorders, to guide independent 

postmortem identification of TF motifs regulating DEG. TF motifs were identified for immune, 

cellular, embryonic and neurodevelopmental processes. 

Conclusion: Our findings of TF-motifs that regulate the expression of immune, cellular 

homeostatic-control, and developmental genes provides novel information about the hierarchical 
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relationship between gene regulatory networks, the TFs that control them, and proximate 

underlying neuroanatomical phenotypes in mood disorders. 

INTRODUCTION 

Adaptive behavior is, in part, governed by genes, especially their coding regions, through gene-

mediated molecular processes that are critical for brain development and function. These gene 

mediated processes, through changes in gene expression, can give rise to complex behavioral 

phenotypes. Transcription factors (TFs) are sequence-specific DNA-binding proteins that are 

also known as regulatory proteins. TFs regulate the expression of genes by recognizing and 

binding to specific DNA regulatory elements called DNA binding domains in the promoter 

region of genes (Changeaux 2017; Lambert et al. 2018). This attribute enables TFs to 

hierarchically regulate the expression of genes by controlling (i.e. promoting/activating or 

blocking/repressing) transcription of the adjacent coding regions into mRNA, and subsequent 

translation into proteins (Changeaux 2017; Lambert et al. 2018). TFs are therefore in a 

functionally elevated status in the hierarchy of gene expression repertoires because they are able 

to cooperatively, or synergistically regulate genes encoding other TFs (Lambert et al. 2018). 

Consequently, gene regulatory networks underlie essential biological processes such as brain 

development, synaptic formations and emergent behaviors like learning and memory that depend 

on neurodevelopmental processes (Kerszberg & Changeaux 1998; Tsigelny et al. 2013).  

Based on the complex role of thousands of transcription factors in controlling gene 

regulation, dysregulation of TF-mediated gene expression programs has been hypothesized to 

contribute to a broad range of diseases (Lee & Young 2013), including neuropsychiatric 

disorders (Lee & Young 2013; Nord AS, Pattabiraman K, Visel A & Rubinstein JLR 2015; 

Changeaux 2017; Torre-Ubieta et al. 2018). However, the putative role of TF networks in mood 
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disorder pathogenesis is not well understood. Adult brain gray matter volumetric (GMV) 

reductions in the anterior part of the insula, a region of the cerebral cortex folded deep within the 

lateral sulcus, have been consistently identified in mood disorders (Goodkind et al. 2015; Wise et 

al. 2016). Such reduced GMV are found to predict cognitive impairment and affective 

dysfunction in both MDD and BD (McTeague et al. 2017). Functional magnetic resonance 

imaging (fMRI) of the right anterior insula region has been reported to selectively predict the 

therapeutic response to psychotherapy and pharmacotherapy (McGrath et al. 2013). Because 

mood disorders are the most common neuropsychiatric syndromes (Yizhar 2012), and they 

collectively account for a high global burden of disease (Collins et al. 2010), the current study 

examined the role of TFs in anterior insula gene expression profiles associated with affective 

dysfunction. Specifically, we used robust imaging-guided transcriptomics, a method that 

performs meta-analyses of neuroimaging results of gray matter changes associated with a disease 

phenotype (i.e., mood disorder diagnosis), to guide independent post-mortem dissection of the 

identified regional gray matter change for RNA-sequencing studies of gene expression profiles 

for the disease phenotype in question (i.e., mood disorders). We tested the hypothesis that TF 

motifs will be associated with differentially expressed genes (DEGs) in the postmortem anterior 

insula cortex of mood disorder (i.e., MDD & BD) donors relative to controls. This robust 

imaging-guided transcriptomics methods enabled the goal of realizing a more anatomically 

precise RNA-seq study of the putative pathological tissue associated with mood disorder 

diagnoses. The results indicate that relative to controls, DEGs in postmortem mood disorder 

tissue are associated with TF motifs known to regulate expression of i) toll-like receptor 

signaling/immune and inflammatory processing genes, b) cellular homeostatic control genes, and 
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c) genes involved in cellular and brain developmental processes. 

 

METHODS 
 
Localization of brain gray matter loss in mood disorders 

To identify the brain’s most anatomically proximate regional involvement in mood pathology, 

with the goal of targeting the identified pathological sites for postmortem transcriptomics, we 

first performed a large scale meta-analysis of voxel based morphometry studies of gray matter 

loss in mood disorders using the anatomical likelihood estimation approach. The anatomical 

likelihood estimation approach models the spatial uncertainty associated with each reported 

location for significant between-group differences (Eickhoff et al. 2009), and further compute the 

convergence across all included experiments by the union of the ensuing probabilistic model 

relative to a null-distribution and thereby reflecting a random spatial association between the 

findings of different experiments (Eickhoff et al. 2012). The identified brain region exhibiting 

the most extensive gray matter loss in mood disorder brain imaging cohorts (Figure 1A) was 

used for our robust imaging-guided transcriptomics by first generating native space 

reconstruction of the reduced anatomical sub-region (Figure 1 B & C), and then using the 

reconstructed images were to guide postmortem tissue section in independent samples (Figure 1 

C). Specifically, the identified gray matter loss was demarcated in 3-D space to guide the 

dissection of the targeted region in the independent postmortem mood disorder cohorts.  

 

Postmortem variable factor-analysis  

To explore morbidity related gene expression profiles beyond the conventional DSM diagnosis-

centered case vs. control statistical comparisons, we conducted an exploratory factor analysis, a 
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data reduction technique, to identify higher-order composite variables included with the 

postmortem data. For each postmortem sample, the donor data includes specific mood disorder 

and comorbid lifetime-Axis-I comorbidity (i.e., number of lifetime-Axis-I diagnostic 

occurrences, e.g. (poly)-substance use disorders, psychosis, anxiety, eating disorders, etc. 

alongside the primary mood disorder diagnosis of BD or MDD); comorbid lifetime-Axis-III 

diagnoses (i.e. number of lifetime-Axis-III medical conditions such as diabetes, cancer, 

cardiovascular disease, etc.); cause of death (i.e. death by suicide, homicides, accidents or natural 

death due to comorbid Axis-III medical conditions); and as specified by the medical examiner 

reports (e.g. blunt force trauma to the chest, gunshot, motor vehicle accident, drowning, hanging, 

etc.); demographics (race, age at death, sex, years of education, number of children/fecundity, 

and marital records); technical variables (brain-weight, postmortem interval ‘i.e. the time that has 

elapsed since a person has died’, pH, and RNA integrity number (RIN)); and toxicology (blood 

alcohol/blood narcotics levels) (see Table 1 for diagnostics relations with demographics, suicide 

and other manners of death, positive toxicology and postmortem qualitative data; & 

Supplementary Table 1 for diagnostic comorbidity on axis-I/co-occurring lifetime mental 

illness,). Principal Axis Factoring (Oblimin Rotation with Kaizer Normalization) (Costello & 

Osborne 2005) was applied to identify higher-order factors explaining the differences in 

postmortem variables and included those variables with communalities of ≥ 0.5. Given our focus 

on identifying TF motifs associated with mood disorder comorbidity burden, we first conducted 

DEG analysis for bipolar disorder vs. controls, MDD vs. controls, and high vs. low Axis-I 

comorbidity by conducting a split-half comparison of the lower half vs. the higher scoring 

donors on this higher-order variable representing Axis-I comorbidity. 
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Brain Dissection: The NIMH Human Brain Collection Core (HBCC) provided the Postmortem 

samples for which informed consents are acquired according to NIH IRB guidelines. Clinical 

characterization, neuropathology screening, and toxicology analyses followed previous protocols 

(Martin et al. 2006). We applied robust imaging-guided transcriptomics as follows: first, the 

region of interest targeted for dissection was defined as portion of right AIC encompassing the 

identified in a meta-analysis of imaging studies to harbor the most reduced GMV subsection of 

the entire brain in mood disorders (See Figure 1A). Electronic image slide of the imaging-

defined GMV loss volumes (Figure 1 B & C) were then shared with the HBCC neuropathologist 

who used these images to guide dissection of coronal tissue slabs of each postmortem donor 

brain (see Figure 1D) at the NIH clinical center.  

 

RNA-Extraction: All dissected tissues were separately pulverized and 50 mg aliquoted from 

each sample for standardized total RNA processing. Specifically, RNeasy Lipid Tissue Mini Kit 

(50) was used for RNA purification using the 50 RNeasy Mini Spin Columns, Collection Tubes 

(1.5 ml and 2 ml), QIAzol Lysis Reagent, RNase-free Reagents and Buffers kit from 

Qiagen. DNase treatment was applied to the purified RNA using Qiagen RNase-Free DNase Set 

(50) kit consisting of 1500 Kunitz units RNase-free DNase I, RNase-free Buffer RDD, 

and RNase-free water for 50 RNA minipreps. After DNAse treatment, the purified RNA from 

the pulverized AIC tissue sections were used to determine RNA quality as measured in 

RNA integrity number (RIN) values using Agilent 6000 RNA Nano Kit consisting of the 

microfluidic chips, Agilent 6000 RNA Nano ladder and reagents on Agilent 2100 Bioanalyzer. 

Samples with RIN < 6 were excluded and the 100 samples meeting inclusion were shipped 

directly from the NIMH HBCC core to the Genome Sequencing and Analysis Facility (GSAF: 
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https://wikis.utexas.edu/display/GSAF/Home+Page) at the University of Texas, Austin, USA for 

RNA-sequencing. 

 

Illumina-Sequencing, Read-Mapping and Gene-Quantification: Total RNA was extracted 

and only samples with RNA integrity numbers (RIN values) greater than 6 as confirmed using 

the Agilent Bioanalyzer were used for library preparation. First. Ribosomal RNA was depleted 

using RiboMinus Eukaryote kit from Life Technologies (Foster City, CA, USA) for RNA-Seq 

and confirmed using an Agilent Technologies’ Bioanalyzer (Santa Clara, CA, USA). mRNA 

selection was completed using the Poly(A) purist kit from Thermofisher and paired-end libraries 

with average insert sizes of 200bp were obtained using NEBNext Ultra II Directional 

RNAs Library Prep kit from New England BioLabs. All 100 samples were processed and then 

sequenced on the Illumina HiSeq 4000, PE150, at the Genome Sequencing and Analysis Facility 

at UT Austin, USA.  

30 million paired-end reads per sample (150 base pairs in length) were generated by sequencing 

runs of 4 samples per lane of the sequencer. Sequenced reads were assessed for quality with 

Fastqc (Andrews 2010) to specifically assess sequencing reads for median base quality, average 

base quality, sequence duplication, over-represented sequences and adapter contamination.  

 

Differential Gene Expression Analysis: The reads were pseudo-aligned to the human reference 

transcriptome (GRCh38- gencode) using kallisto (Bray 2016), and transcript-level abundances 

were obtained. The transcript-level counts were aggregated to gene-level using tximport in R. 

The abundances were normalized using DESeq2 (Anders & Huber 2010; Love et al. 2014), and 

transformed with variance stabilizing transformation (defined here as a transformation technique 
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that seeks to create more homoscedasticity, thereby having a closer to constant variance in the 

dataset regardless of the mean expression value (Love et al. 2014)).   

We performed differential expression analysis based on the negative binomial distribution for 

modeled gene counts using DESeq2. RIN-values were included in the DESeq2 design matrix as 

a covariate to control for the potentially confounding effects of RNA quality. The analysis 

controlled for group factors as well as possible individual outliers by removing genes with 

expression values of 0 in 80% or more of the samples. We performed differential expression 

analysis to identify DEGs in the following comparisons: BD vs. controls; MDD vs. controls, and 

in a pooled cohort of BD & MDD individuals with high vs. low Axis-I comorbidity at absolute 

fold change >=2 and adjusted p-values <=0.1 were selected as significantly differentially 

expressed genes. The DESeq2 package by default calculates false discovery rate adjusted p-

values according to Benjamini and Hochberg (Benjamin & Hochberg 1995). We used an 

adjusted p-value <=.1 as a cut-off to balance type-1 and type-2 error rates and allow more 

inclusive capture of regulatory elements/TFs associated with DEGs in for mood disorders across 

bipolar disorder and unipolar depression.  

 

JASPAR 2018 TFs binding profiling: Given the role of transcription factors (TFs) in regulating 

gene expression via specific DNA-binding domains (motifs) in the gene promoters, we followed-

up on our previous study (Jabbi et al. 2020) that identified whole transcriptome gene expression 

profiles in mood disorders, with the aim to explore in more detail, mood disorder transcriptomics 

by identifying TF motifs. To this goal, we used JASPAR TF binding database to identify motifs 

that were associated with DEGs in BD vs. controls; MDD vs. controls, and in pooled mood 

disorder individuals with high vs. low Axis-I comorbidity. 
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JASPAR is an open access database of non-redundant, manually curated TF-binding 

profiles provided as a publicly available web framework (Khan A et al. 2018). The JASPAR 

2018 version has an updated list of 579 non-redundant TF-binding profiles of the vertebrate 

taxonomy that are systematically stored as position frequency matrices (PFMs), which 

summarizes experimentally determined DNA sequences bound by an individual TFs by counting 

the number of occurrences of each nucleotide at each position within aligned TF-binding sites 

(Khan A et al. 2018). This JASPAR 2018 CORE vertebrate database of 579 PFMs was first used 

to predict TF-binding sites in the human genome, and then made available to the scientific 

community through the UCSC Genome Browser track data hub 

(http://jaspar.genereg.net/genome-tracks/) for use to identify specific TF-binding profiles.  

EnrichR (Kuleshov et al. 2016) was used to identify TF motifs that were associated with 

our DEGs. We focused on the top 10 most significant TF motifs found in the database of 579 

PFMs associated with the DEGs observed in our DESeq2 results dataset for each of the 3 

analytical contrasts (i.e. BD vs. controls; MDD vs. controls; pooled mood disorder cohort with 

high Axis-I comorbidity vs. pooled mood disorder cohort with low Axis-I comorbidity). TF 

motifs within the JASPAR 2018 that were found to be associated with DEGs at adjusted p-value 

cutoff of 0.1 (i.e. using the false discovery rate Benjamini and Hochberg multiple comparison 

method (Benjamini & Hochberg 1995) were identified as identified TFs associated with each of 

the 3 DEG contrasts (i.e. BD vs. controls; MDD vs. controls; low vs. high Axis-I comorbidity) 

we selected the top 10 TF motifs (see Figures 2&3). 

 

RESULTS  

Robust Imaging-guided Transcriptomics 
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Using the anatomical likelihood estimation meta-analysis (Eickhoff et al. 2009), we previously 

identified the right anterior insula as the brain region with the most extensive GMV reduction in 

mood disorders relative to healthy controls (Figure. 1A) (Jabbi et al. 2020). We manually 

reconstructed this region in ITKSnap (http://www.itksnap.org/pmwiki/pmwiki.php) and provided 

this 3-D volume information to the pathologist at the brain bank to guide postmortem dissection 

of anterior insula tissue from each sample for subsequent RNA extraction and RNA-sequencing. 

The dissected regional volume that captured the reduced GMV corresponded to the anterior 

portion of the insula, where the caudate and putamen are approximately equal in size (Figure. 

1A-D). 

 

Postmortem Variability 

Factor analysis identified two higher-order factors representing 1) number of Axis-1 diagnostic 

comorbidity and suicide completion (e.g. substance use disorders or abuse/psychosis/anxiety, 

and whether the donors died by suicide), and 2) RNA integrity number (RIN) values which were 

subsequently included in all differential gene expression analyses as covariates. The identified 

higher order factor Axis-I diagnostic comorbidity and suicide completion were used for the 

comparison of high versus low scores of each of these variables to determine differential gene 

expression and their regulatory TF motifs. 

Apart from race, no other demographic variables differed across groups [MDD & BD 

samples had more Caucasian donors whereas controls had more African American donors 

(p<0.0001, F=12)]. Covarying for race in subsequent ANOVAs, Axis-I comorbidity burden, 

which clustered with mood disorder donor sample suicide completion rate in the explorative 

factor analysis, was different across groups (p<0.0001, F=30); showing Bonferroni corrected 
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pairwise-comparison differences between MDD > controls (p<0.0001); BD > controls 

(p<0.0001); and BD > MDD (p = 0.004).  

 

DEGs and JASPAR TF motif identification of group-related differential gene expression 

We found 456 differentially expressed genes for the bipolar vs. controls (Supplementary Table 

2) and 2722 differentially expressed genes for MDD vs. controls (Supplementary Table 3). 

Further analysis that includes DEG results from more than one brain region in the same mood 

disorder samples will help explain if our observed higher number of DEGs in MDD vs. control 

samples relative to bipolar disorder vs. controls is pathophysiologically relevant in a region-

specific manner. By looking upstream of  BD vs. control DEGs for enriched TF motifs, we found 

that DEGs had motifs of MIB2, Esrrb, TEAD2, ZBTB7A, MIR210, MZF1, KLF11, SMAD4, 

ZNF148, and TEAD4 TFs (Figure. 2A). Similar analysis of MDD vs. controls DEGs identified 

associated motifs of MIR210, TEAD4, SP4, TEAD2, TCFAP2A, SP1, SP3, PCBP1, HNF1B, and 

Esrrb TFs (Figure. 2B).  

Given our approach to examine the hierarchical relationship between TF motifs and 

DEGs profiles associated with the degree of psychiatric morbidity/Axis-I comorbidity in the two 

mood disorder cohorts, we first used principal axis factoring to identify Axis I comorbidity (i.e. 

total number of psychiatric diagnoses), and manner of death by suicide or non-suicide (together 

comprising the factor we refer to here as the Axis-I comorbidity burden) to compositely explain 

variability in (i) Axis-I comorbidity burden, and (ii) suicide completion. We included this factor 

in our analysis using a split half approach of high vs. low Axis-I comorbidity burden to identify 

TF motifs for DEG profiles for Axis-I comorbidity burden (see Supplementary Table 4 for 

complete DEGs). We found DEGs in the pooled BD & MDD donor samples (i.e. without 
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control donors) and these DEGs were associated with TF motifs of NFATC2, GABPA, HMAGA1, 

NR3C1, GTF2I, IRF2, POU1F1, SAMD9L, SNAI1, and CBEPB (Figure. 3). Collectively, these 

TFs are known to regulate expression of toll-like receptor signaling genes, cellular homeostatic 

control genes, and genes involved in embryonic, cellular and neurodevelopmental processes.   

Specifically, comparing BD vs. controls revealed differentially expressed genes with 

associated motifs for TFs involved in regulating a) immune response and antigen processing (i.e. 

MIB2), b) master transcriptional repression and activation of a wide range of genes (i.e. 

ZBTB7A), c) Zinc Finger transcriptional control and cellular developmental processes and 

apoptosis (i.e. ZBTB7A, MZF1, KLF11, ZNF148), d) post-translational modification of gene 

expression and ion channel transporter expression (i.e. SMAD4, MIR210, Esrrb) and e) Hippo-

signaling pathway, organ size control and regulation of cell proliferation and apoptosis (i.e. 

TEAD2, TEAD4) (Figure 2A). Comparing MDD vs. controls revealed differentially expressed 

genes with associated motifs for TFs involved in regulating a) post-translational modification of 

gene expression and ion channel transporter expression (i.e. MIR210, Esrrb) and b) Hippo-

signaling pathway, organ size control and regulation of cell proliferation and apoptosis (i.e. 

TEAD2, TEAD4), c) Zinc Finger G Protein-Coupled receptor binding TF activity (i.e. SP4, SP3, 

SP1) implicated in mood disorders (Zhou et al. 2009; Shi et al. 20011; Shyn et al. 2011), d) TF 

super families involved in embryonic development, activation or repression of transcriptional 

activity of different sets of genes and RNA-binding (i.e. TFAP2A, PCBP1, HNF1B) (Figure 2B).  

Restricting our analysis to comparing mood disorder donors with high Axis-I 

comorbidity vs. mood disorder donors scoring low on Axis-I comorbidity, we found 

differentially expressed genes with associated motifs for TFs involved in regulating a) 

inflammatory and immune response and toll-like receptor signaling, b) embryonic and cellular 
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developmental processes, and c) cellular and peripheral homeostatic control (see Figure 3 for 

specific regulatory functions for each of the identified TFs). When comparing DEGs in high vs. 

low Axis-I comorbidity in mood disorders, we found 4 motifs for master TFs implicated in 

regulation an array of functions including general transcriptional regulation through interaction 

with basal transcriptional machinery (i.e. G2FTI), master transcriptional co-activation of several 

other TFs (i.e. CREBBP), and a master TF that regulates inflammatory, cellular developmental, 

and glucocorticoid gene expression processes (i.e. NR3C1 and POU1F1) (see Figure 3 for 

specific regulatory functions for each of the identified TFs). Specifically, the GTF2i TF gene has 

been genetically associated with the regulation of brain-mediated affective, anxiety and other 

neurocognitive functions (Jabbi et al 2015; Procyshyn et al. 2017; Stein et al. 2017; Roy 2017; 

Jabbi et al. 2019) and in embryonic and neurodevelopment (Enkmandakh et al. 2009; Roy 2017; 

Barak et al. 2019). CREBBP has been earlier found to be involved in depressive illness and 

treatment response (Young et al. 2002; Cristafulli et al 2012; Cho et al. 2019), whereas POU1F1 

(Gerritsen et al. 2017), and especially NR3C1 have been implicated in an array of regulatory 

functions and genetically associated with glucocorticoid functions, and mediating the interplay 

between early environmental adversity experience and the etiology of mood illnesses 

(Kundakovic et al. 2007; Lewis et al. 2012; Mandelli & Serretti 2013; Perroud et al. 2014; Smart 

et al. 2015; Roy et al. 2017; Keller et al. 2017; Farrell et al. 2018; Peng et al. 2018; Duffy et al. 

2019). 

 

DISCUSSION 

Understanding the molecular substrates for regional brain abnormalities underlying major mental 

illness such as mood disorders, which affect over 10% of the population across the lifetime in the 
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US (Collins et a. 2011), will not only contribute to better mechanistic understanding of the 

neurobiological bases for behavioral pathologies (Nestler 2015; Sahin & Sur Science 2015; 

Torre-Ubieta et al. 2018; Jabbi & Nemeroff 2019), but will also be essential for novel drug 

design (Changeaux 2017).  

In the present study, we applied robust imaging-guided transcriptomics to target 

neuroimaging identified GMV reductions in the anterior insula associated with mood and 

depressive disorder diagnoses (Goodkind et al. 2015; Jabbi et al. 2020) for dissection and 

subsequent RNA-seq analysis in postmortem donors. This novel approach allows the precise 

molecular targeting of a localized anterior insula region that has been found to exhibit the 

strongest degree of gray matter loss in mood disorders (Jabbi et al. 2020). This robust imaging-

guided transcriptomics study therefore integrated RNA-seq characterization of gene expression 

abnormalities in an anatomically abnormal region in mood disorders and allowed testing of the 

hypothesis that transcription factor motifs will be associated with differential gene expression 

profiles in the postmortem anterior insula cortex of mood disorder subjects relative to controls.  

We found that comparing BD vs. controls revealed DEGs with associated motifs for TFs 

involved in regulating immune response and antigen processing, master transcriptional 

repression/activation of a wide range of genes, Zinc Finger transcriptional control of cellular 

developmental processes, post-translational modification of gene expression and ion channel 

transporter expression and Hippo-signaling pathway involved in organ size control and 

regulation of cellular development. Comparing MDD vs. controls revealed DEGs with associated 

motifs for TFs involved in regulating post-translational modification of gene expression and ion 

channel transporter expression and Hippo-signaling pathway, Zinc Finger G Protein-Coupled 

receptor binding TF activity that has been implicated in mood disorders (Zhou et al. 2009; Shi et 
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al. 20011; Shyn et al. 2011), and TF super families involved in embryonic and cellular 

development. DEGs in high vs. low Axis-I comorbidity revealed motifs for master TFs 

implicated in the regulation of an array of functions including general transcriptional regulation 

through interaction with basal transcriptional machinery, and in inflammatory, cellular 

developmental, and glucocorticoid gene expression processes. Of interest, the two comparisons 

between BD vs. controls and MDD vs. controls identified TF motifs of similar pathways 

including four TFs (i.e. MIR120, TEAD2, TEAD4 and Esrrb) suggesting possible specific as well 

as overlapping TF motifs for BD & MDD. If replicated, the identified TF motifs associated with 

DEGs in mood disorder diagnoses and overall disease morbidity will likely reveal a vulnerability 

in the general transcriptional pathway mechanism in mood disorder disease states.  

The identified DEG-profile associated TF motifs are known to regulate expression of toll-

like receptor signaling genes, cellular homeostatic control genes, and embryonic and cellular 

including neurodevelopmental gene networks found to be differentially expressed in BD vs. 

controls, MDD vs. controls, and in high Axis-I comorbid mood disorder individuals vs. low 

Axis-I comorbidity mood disorder individuals. We found putative hierarchical TF regulatory 

involvement in the gene expression landscapes associated with BD and MDD diagnoses, such 

that enrichments of master transcription factors were predominantly associated with the gene 

expression landscape in elevated mood disorder morbidity, thereby echoing previous work 

(Tsigelny et al. 2013; Lee & Young 2013; Changeaux 2017; Lambert et al. 2018; Chen C et al. 

2019). It is important to note that a number of the TFs we have associated with anterior insula 

gene expression in bipolar disorder vs. controls (i.e., MIB2, Esrrb, MZF1, and ZNF148) and in 

major depressives vs. controls (i.e., PCP1, HNF1B, and Esrrb) are novel in that they have not 

been previously been identified in any genetic screens. Interestingly, many of the TFs we have 
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identified have been implicated in neural development: TEAD2 and TEAD4 appear to play a role 

in cortical development (Mukhtar et al. 2020). Furthermore, KLF11 (Duncan et al. 2012; Duncan 

et al. 2015; Harris et al. 2015; Kollert et al. 2020), SP1 (Brewer et al. 2004; Tamayo et al. 2009; 

Pinacho et al. 2011; Fuste et al. 2013; Saucedo-Uribe et al. 2019; Hung et al. 2020), and SP4 

(Zou et al. 2009; Fuste et al. 2013; Young et al. 2015) have been found to be involved in the 

genetic regulation of cell-fate and apoptosis as well as in mood and related psychiatric disorders. 

And SMAD2 has been linked to antidepressant activity (Dow et al. 2005) in addition to neuronal 

development (Zhang et al. 2013). Finally, our results are in line with recent postmortem studies 

of other brain areas in mood disorder morbidity that found disease-related gene expression 

changes in immune and inflammatory signaling (Pantazatos et al. 2007; Darby et al 2016; 

Wohleb et al. 2016; Pacifico et al. 2017; Pandey et al. 2017; Nagy et al. 2020), cellular 

homeostatic and synaptic signaling (Pantazatos et al 2007; Sequeira et al. 2007; Sequeira et al. 

2009; Kang et al. 2012; Li et al. 2013; Gray et al. 2015; Yin et al. 2016; Labonte et al. 2017; 

Zhao et al. 2018), and in cellular and neurodevelopmental signaling (Paterson  et al. 2017). 

Conventional analyses of differential gene expression differences related to a specific 

phenotype of interest does not account for the hierarchical nature of gene expression regulation, 

e.g., that TFs regulate other gene classes. Our current identification of mood disorder DEG 

associated TF motifs known to regulate the expression of toll-like receptor signaling pathway 

genes, cellular homeostatic control genes, and embryonic as well as cellular and 

neurodevelopment pathway genes in mood disorder diagnostic phenotypes, suggests a 

hierarchical involvement of the identified TFs in the neurobiological abnormalities underlying 

mood disorder phenotypes.  
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Despite its obvious strengths, our use of novel imaging-guided transcriptomics approach 

to identify TF motifs associated with gene expression in mood disorders has several limitations. 

First, we provide statistical associations rather than direct testing of the causal role of the 

identified TF motifs in 1) the developmental or disease-driven emergence of the anatomical gray 

matter loss identified in the anterior insula of mood disorder individuals, and 2) the observed 

postmortem differential gene expression landscape measured within the anterior insula in mood 

disorder morbidity. Second, anatomical abnormalities in the anterior insula are not specific to 

mood disorder diagnoses per se, but involved in several neuropsychiatric diagnoses including 

anxiety, psychosis, substance use and eating disorders (Goodkind et al. 2016; Janiri et al. 2019), 

suggesting the importance of including other more mood disorder-specific regional anatomical 

brain abnormalities in future transcriptomic studies. However, we specifically targeted the 

anterior insula subsection found to be the most reduced in GMV measures across the entire brain 

in mood disorders in our meta-analysis with the expectation that this locus of anatomical 

abnormality likely harbors important transcriptomic clues to mood disorder molecular 

abnormalities. Third, our approach does not allow us to confirm whether the postmortem mood 

disorder samples we examined also showed a reduction in anterior insula GMV. Future studies 

need to find a way to estimate both anatomical and gene expression abnormalities in the same 

postmortem brain samples across brain regions to directly link anatomical abnormalities with 

underlying molecular genetic regulatory abnormalities in the same postmortem brains. Fourth, in 

light of the limited number of samples for a study of complex biological variables, and the fact 

that the TF data are secondary derivations from the differential gene expression analyses, our 

results could be confounded by  factors between cases and controls, despite our attempts to 

control for such factors. Fifth, bulk tissue RNA-seq cannot account for the role of specific cell-
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types in defining TF regulatory involvements in mood disorder transcriptomics. Single cell 

RNA-seq analyses in specific brain regions, ideally across the lifespan, will greatly advance our 

understanding of the cell-type specific role of the identified TFs in the pathogenesis of mood 

disorders. Finally, including a comparison psychiatric cohort without mood symptoms such as 

schizophrenia in future studies will help address the specificity of the identified TF targets for 

mood disorder therapeutics. These limitations notwithstanding, our current focus on the anterior 

insula given its identification as the region exhibiting the most extensive gray matter loss 

associated with mood disorder diagnoses, provides a framework for integrative translational 

studies of anatomical and molecular abnormalities underlying prevalent brain diseases.  

In conclusion, we applied robust imaging-guided transcriptomics to characterize the roles 

of specific TFs in mood disorders. Our study provides important initial insights into the 

molecular pathways, and the relevant TFs that may be regulating them, in the context of mood 

disorders and related psychiatric diseases. Our results suggest that the postmortem gene 

expression patterns we observed in the anterior insula of mood disorder donors are associated 

with (1) the magnitude of mood disorder morbidity in a putative anatomically compromised 

brain region in mood disorders; and (2) specific TFs known to regulate broad transcriptional 

processes, immune response, cellular homeostasis, embryonic and neuronal development, and 

the etiology of mood disorders. Together, these findings illustrate that studies of gene regulatory 

networks have the potential to elucidate the hierarchical organizational principles of the gene 

expression landscapes driving major psychiatric disorders, and thereby accelerate novel 

pharmacological target discovery.  
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FIGURE & TABLE LEGENDS 
Figure 1 A-B. Gray matter loss in anterior insula cortex of BD and MDD vs. controls as 

identified with largescale voxel-based morphometry imaging meta-analysis. A) illustrates 

localized anterior insula gray matter reduced area associated with mood disorder diagnoses on a 

coronal section; and B) illustrates the sagittal reconstruction of the reduced volume in A as well 

as the 3-dimentional view of the reduced volume. The anatomical information in A and B 

illustrated slide by slide on coronal sections in C) and these images are used to guide postmortem 

dissection of anterior insula tissue from an independent sample in D.   

 

Figure 2. Anterior Insula postmortem TF motifs for gene expression profiles in BD and 

MDD relative to controls. A) Gene expression profiles in BD vs. Controls are illustrated to be 

associated with the top ten TF motifs for genes that are implicated in regulating inflammatory 

and immune responses, early embryonic and cellular development, and in post transcriptional 

gene expression. B) Gene expression profiles in MDD vs. Controls shown to be associated with 
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the top ten TF motifs known to regulate inflammatory and toll-like receptor signaling, cellular 

development and peripheral homeostatic/hormonal signaling and post transcriptional 

regulation/DNA methylation. C) Venn diagram for TF motifs specific for BD vs. controls, MDD 

vs. controls and the overlapping TFs motifs for which were found for both BD vs. controls and 

MDD vs. controls. 

 

Figure 3. List of TF genes showing JASPAR 2018 identified associated motifs for gene 

expression profiles for high compared to low Axis-I comorbidity burden in BD and MDD. 

The identified TFs include putative master transcriptional regulators (NR3C1, GTF2I and 

CBEPB) as well as regulators of cytokine gene expression (NFATC2 and IRF2), viral mediated 

functional immune-related gene expression (GABPA and HMGA1), and in regulating early 

embryonic (SNAI1), cellular (SAMD9L) and hormonal development (POU1F1).  

 

Table 1 Legend           

Abbreviations: MDD, major depressive disorder; GMV, gray matter volume; AIC, anterior 

insula cortex; PMI, postmortem index; Ph, measure of acidity; RIN, RNA integrity number 

which is a measure of RNA quality. 

 

Supplementary Table 2-4 Legend 

Abbreviations: baseMean, normalized read counts of all samples; log2Foldchange, effect size 

estimate; lfcSE, standard error of the log2foldchange; stat, Wald statistical test values; pvalue, 

uncorrected p-value; p-adj, corrected p-value. Fold change is calculated as the ratio of mean 
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expression in high psychiatric morbidity & suicide mortality score to the mean expression in low 

psychiatric morbidity & suicide mortality score.  

 

 

 

 

 

 

 

 

 

TABLES 

Table1. Anterior Insula sample diagnostics, suicide, demographics, toxicology and postmortem quality 
data 

Diagnoses   N (# of 
Females) 

Manner of Death  (# 
of Females) 

Age at 
Death (in 
Mean, SD, 
& Range in 
years) 

Positive Toxicology 
Postmortem Qualitative 
Measures: PMI; Ph; RIN 

(in mean & Range) 

        

Major 
Depressive 

Disorder 
30 (11) 

24 Suicides (10 
Female Suicides), 6 
Natural (1 Female) 

47 ±16.8 (13 
- 75)  

Antidepressants = 9 
Antipsychotics = 3  

Ethanol = 3       
Nicotine = 4     Opioids 

= 4 

PMI (28.86; 15-52.5) 

Ph (6.47; 5.98-6.77)    

RIN (6.82; 6-7.9) 

Bipolar 
Disorder 37 (12)  

28 Suicides (8 Female 
suicides), 6 Natural (3 

Female),             
3 Accidental (1 

Female) 

43 ±14.78; 
18 – 76 

Antidepressants = 17 
Antipsychotics = 10  

Ethanol = 7       
Nicotine = 4     Opioids 

= 8 

PMI (31.05; 15-84.5)       

Ph (6.37; 6-6.86)  

RIN (6.96; 6-8.2) 

Normal 
Controls 33 (10) 

0 Suicide, 28 Natural 
(9 Female), 2 

Accidental,    3 

46 ±15; 17 – 
74 

Antidepressants = 0 
Antipsychotics = 0  

Ethanol = 2       

PMI (30.15; 15-60.5)     

Ph (6.55; 6.25-6.92)   
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Homicides (1 Female) Nicotine = 6     Opioids 
= 0 RIN (7.37; 6.3-8.3) 
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Sagittal View
Anterior Insula Region of Interest Demarcated Reduced Volume in 

Mood Disorders (Bipolar and Major Depression)

Coronal Dissection Locale of Anterior Insula used for postmortem dissection provided to HBCC Neuropathologist
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Coronal View
Anterior Insula Region of Interest VBM Meta-analysis Results of Reduced 

Volume in Mood Disorders (Bipolar and Major Depression)

D

Dissected PortionPostmortem insula

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 28, 2020. ; https://doi.org/10.1101/864900doi: bioRxiv preprint 

https://doi.org/10.1101/864900
http://creativecommons.org/licenses/by-nc-nd/4.0/


MDD vs. Controls Enriched Transcription Factors (JASPAR)

Anterior Insula TF Motifs in Mood Disorders vs Controls
A

B

Bipolar Disorder vs. Controls Enriched Transcription Factors (JASPAR)

C BD vs Controls MDD vs Controls
MIB2

Esrrb

TEAD2
ZBTB7A

MIR120
MZF1

KLF11

SMAD4

ZNF148

TEAD4

SP4

SP3

TCFAP2

SP1

PCBP1

HNF1B

Overlap
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JASPAR TF motifs for High vs. Low Axis-I Comorbidity Load in BD & MDD 
- Promotes induction of interleukin genes IL-2, IL-3, and IL-4 and TNF-alpha transcription during 

immune response

- Activates cytochrome oxidase expression and nuclear control of mitochondrial function
- Regulates expression of adenovirus E4 gene during immune functions

- Regulates the integration of retroviruses into chromosomes
- Regulates adipogenesis

- Master regulator of inflammatory and cellular developmental processes
- Regulates glucocorticoid transcription

- Master regulator of general gene expression by interacting with basal transcriptional machinery
- Activates immunoglobulin heavy chain transcription

- Inhibits IRF-mediated transcriptional activation of interferon-alpha and interferon-beta

- Regulates transcription of genes involved in pituitary development and pituitary hormone 
expression; with mutations of the TF gene causing pituitary hormone deficiency

- Regulates mammalian cellular and organ development

- Mediates downregulation of growth-factor signaling by internalizing growth factor receptors

- Regulates mesoderm formation in developing embryos by transcriptionally repressing and thereby 
downregulating the expression of ectodermal genes within the mesoderm.

- Regulates cell migration and growth arrest. 

- Master regulator of several other transcription factors through transcriptional co-activation
- Controls embryonic development and cell growth 
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