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Abstract
• Superconducting circuits (transmon qubit devices) are contestants
in the race to build a universal quantum computer. This poster
presents one way to study these systems numerically (for about 15 to
20 qubits) on a supercomputer without making approximations to the
model Hamiltonian. In the near future we will use the corresponding
simulation code to simulate real world devices which are currently built
within the OpenSuperQ project.

Methodology: Product Formula Algorithm

• The so-called product formula algorithm [1] enables us to solve the
time dependent Schrödinger equation in such a way that the error with
respect to the exact solution is controllable by the time step parameter
τ .

• The first order product formula algorithm has a local error which is
bounded by O(τ 2), the error for the second order algorithm is bounded
by O(τ 3), more generally the n-th order algorithm has an error which
is bounded by O(τ n+1).

• Note that if the error, introduced by the truncation (see model), is
greater than the product formula approach error, the error scaling is
not valid any more.

Model: Superconducting Circuits

• The model Hamiltonian H(t) = HTr .(t) + HRes.(t) + HInt. consists of
a transmon or SQUID term

HTr .(t) =
∑
i∈I

ECi(n̂i − nExi(t))2 − EJi ,1cos(ϕ̂i)) −EJi ,2cos(ϕ̂i ± ϕExi(t)),

with the capacitive energies ECi and junction energies EJi ,1 and EJi ,2.
The function ϕExi(t) enables us to perform quantum gate operations
by means of a high speed flux line. Similarly, the function nExi(t)
allows us to perform quantum gate operations by using a voltage source.

• The second term
HRes.(t) =

∑
j∈J

Ωj â†j âj + Ωjεj(t)(âj + â†j ),

describes the resonators, with eigenfrequencies Ωj as well as the
measurement process itself by means of the time dependence part [2]
Ωjεj(t)(âj + â†j ).

• The last term describes a dipole coupling between the different sub-
systems

HInt. =
∑

(i ,j)∈I×J

Gi ,j n̂i(âj + â†j )

+
∑

(j ,j ′)∈J×J

λj ,j ′(âj + â†j )(âj ′ + â†j ′) +
∑

(i ,i ′)∈I×I

Λi ,i ′n̂i n̂i ′.

The parameters Gi ,j describe the qubit-resonator interaction, λj ,j ′

determine the resonator-resonator interaction and Λi ,i ′ the qubit-qubit
interaction.

• Our goal is to keep the truncation error low. Therefore we usually
use the four lowest eigenstates |m〉 of the transmon subsystems as
well as the four lowest eigenstates |k〉 of the resonators as a basis
B = {|m〉 ⊗ |k〉}m,k for the simulations.

Engineering issues: Leakage, Crosstalk and Enviorment
• Due to the fact that we use the four lowest eigenstates of the
transmon term as basis for the time development, we are able to
describe and study the leakage effects.

• Additionally, since we do not approximate the interaction term,
as it is done in most other studies [2], we are able to describe and
study crosstalk in more detail. Crosstalk is associated with undesirable
qubit-qubit interaction.

• The method we use also allows us to extend the current model Hamil-
tonian to one which describes different environments, e.g. two level
defects [3] or quasiparticles [4]. Hopefully this will allow us to study
engineering issues beyond leakage and crosstalk.

Results: The Same Control Pulse And Three Different Approximations
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Figure: Transmon qubit Hamiltonian is truncated at ϕ2.
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Figure: Transmon qubit Hamiltonian is truncated at ϕ4.
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Figure: Transmon qubit Hamiltonian without any approximation.
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