000889312 001__ 889312
000889312 005__ 20211105141527.0
000889312 0247_ $$2doi$$a10.1038/s41567-020-0998-2
000889312 0247_ $$2ISSN$$a1745-2473
000889312 0247_ $$2ISSN$$a1745-2481
000889312 0247_ $$2Handle$$a2128/27071
000889312 0247_ $$2altmetric$$aaltmetric:88402391
000889312 0247_ $$2WOS$$aWOS:000560934900007
000889312 037__ $$aFZJ-2021-00204
000889312 082__ $$a530
000889312 1001_ $$00000-0002-0372-267X$$aDeng, Haiming$$b0
000889312 245__ $$aHigh-temperature quantum anomalous Hall regime in a MnBi2Te4/Bi2Te3 superlattice
000889312 260__ $$aBasingstoke$$bNature Publishing Group$$c2021
000889312 3367_ $$2DRIVER$$aarticle
000889312 3367_ $$2DataCite$$aOutput Types/Journal article
000889312 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1636106300_6365
000889312 3367_ $$2BibTeX$$aARTICLE
000889312 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000889312 3367_ $$00$$2EndNote$$aJournal Article
000889312 520__ $$aThe quantum anomalous Hall effect1,2 is a fundamental transport response of a topological insulator in zero magnetic field. Its physical origin is a result of an intrinsically inverted electronic band structure and ferromagnetism3, and its most important manifestation is the dissipationless flow of chiral charge currents at the edges of the system4, a property that has the potential to transform future quantum electronics5,6. Here, we report a Berry-curvature-driven4,7 anomalous Hall regime at temperatures of several Kelvin in the magnetic topological bulk crystals in which Mn ions self-organize into a period-ordered MnBi2Te4/Bi2Te3 superlattice. Robust ferromagnetism of the MnBi2Te4 monolayers opens a surface gap8,9,10, and when the Fermi level is tuned to be within this gap, the anomalous Hall conductance reaches an e2/h quantization plateau, which is a clear indication of chiral transport through the edge states. The quantization in this regime is not obstructed by the bulk conduction channels and therefore should be present in a broad family of topological magnets.
000889312 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000889312 588__ $$aDataset connected to CrossRef
000889312 7001_ $$0P:(DE-HGF)0$$aChen, Zhiyi$$b1
000889312 7001_ $$0P:(DE-HGF)0$$aWołoś, Agnieszka$$b2
000889312 7001_ $$0P:(DE-HGF)0$$aKonczykowski, Marcin$$b3
000889312 7001_ $$00000-0002-9747-8144$$aSobczak, Kamil$$b4
000889312 7001_ $$0P:(DE-HGF)0$$aSitnicka, Joanna$$b5
000889312 7001_ $$0P:(DE-HGF)0$$aFedorchenko, Irina V.$$b6
000889312 7001_ $$0P:(DE-HGF)0$$aBorysiuk, Jolanta$$b7
000889312 7001_ $$0P:(DE-Juel1)165229$$aHeider, Tristan$$b8
000889312 7001_ $$0P:(DE-HGF)0$$aPluciński, Łukasz$$b9
000889312 7001_ $$00000-0002-0597-204X$$aPark, Kyungwha$$b10
000889312 7001_ $$0P:(DE-HGF)0$$aGeorgescu, Alexandru B.$$b11
000889312 7001_ $$00000-0003-1528-4344$$aCano, Jennifer$$b12
000889312 7001_ $$00000-0001-9210-4955$$aKrusin-Elbaum, Lia$$b13$$eCorresponding author
000889312 773__ $$0PERI:(DE-600)2206346-8$$a10.1038/s41567-020-0998-2$$gVol. 17, no. 1, p. 36 - 42$$n1$$p36 - 42$$tNature physics$$v17$$x1745-2481$$y2021
000889312 8564_ $$uhttps://juser.fz-juelich.de/record/889312/files/2001.10579.pdf$$yPublished on 2020-08-17. Available in OpenAccess from 2021-02-17.
000889312 8564_ $$uhttps://juser.fz-juelich.de/record/889312/files/s41567-020-0998-2.pdf$$yRestricted
000889312 909CO $$ooai:juser.fz-juelich.de:889312$$pVDB$$popen_access$$popenaire$$pdnbdelivery$$pdriver
000889312 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165229$$aForschungszentrum Jülich$$b8$$kFZJ
000889312 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000889312 9141_ $$y2021
000889312 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-05
000889312 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-05
000889312 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-05
000889312 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bNAT PHYS : 2018$$d2020-09-05
000889312 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT PHYS : 2018$$d2020-09-05
000889312 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-05
000889312 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000889312 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-05
000889312 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-05
000889312 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-05
000889312 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-05
000889312 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-05$$wger
000889312 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-05
000889312 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x0
000889312 980__ $$ajournal
000889312 980__ $$aVDB
000889312 980__ $$aI:(DE-Juel1)PGI-6-20110106
000889312 980__ $$aUNRESTRICTED
000889312 9801_ $$aFullTexts