001     889312
005     20211105141527.0
024 7 _ |a 10.1038/s41567-020-0998-2
|2 doi
024 7 _ |a 1745-2473
|2 ISSN
024 7 _ |a 1745-2481
|2 ISSN
024 7 _ |a 2128/27071
|2 Handle
024 7 _ |a altmetric:88402391
|2 altmetric
024 7 _ |a WOS:000560934900007
|2 WOS
037 _ _ |a FZJ-2021-00204
082 _ _ |a 530
100 1 _ |a Deng, Haiming
|0 0000-0002-0372-267X
|b 0
245 _ _ |a High-temperature quantum anomalous Hall regime in a MnBi2Te4/Bi2Te3 superlattice
260 _ _ |a Basingstoke
|c 2021
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1636106300_6365
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The quantum anomalous Hall effect1,2 is a fundamental transport response of a topological insulator in zero magnetic field. Its physical origin is a result of an intrinsically inverted electronic band structure and ferromagnetism3, and its most important manifestation is the dissipationless flow of chiral charge currents at the edges of the system4, a property that has the potential to transform future quantum electronics5,6. Here, we report a Berry-curvature-driven4,7 anomalous Hall regime at temperatures of several Kelvin in the magnetic topological bulk crystals in which Mn ions self-organize into a period-ordered MnBi2Te4/Bi2Te3 superlattice. Robust ferromagnetism of the MnBi2Te4 monolayers opens a surface gap8,9,10, and when the Fermi level is tuned to be within this gap, the anomalous Hall conductance reaches an e2/h quantization plateau, which is a clear indication of chiral transport through the edge states. The quantization in this regime is not obstructed by the bulk conduction channels and therefore should be present in a broad family of topological magnets.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Chen, Zhiyi
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Wołoś, Agnieszka
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Konczykowski, Marcin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Sobczak, Kamil
|0 0000-0002-9747-8144
|b 4
700 1 _ |a Sitnicka, Joanna
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Fedorchenko, Irina V.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Borysiuk, Jolanta
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Heider, Tristan
|0 P:(DE-Juel1)165229
|b 8
700 1 _ |a Pluciński, Łukasz
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Park, Kyungwha
|0 0000-0002-0597-204X
|b 10
700 1 _ |a Georgescu, Alexandru B.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Cano, Jennifer
|0 0000-0003-1528-4344
|b 12
700 1 _ |a Krusin-Elbaum, Lia
|0 0000-0001-9210-4955
|b 13
|e Corresponding author
773 _ _ |a 10.1038/s41567-020-0998-2
|g Vol. 17, no. 1, p. 36 - 42
|0 PERI:(DE-600)2206346-8
|n 1
|p 36 - 42
|t Nature physics
|v 17
|y 2021
|x 1745-2481
856 4 _ |u https://juser.fz-juelich.de/record/889312/files/2001.10579.pdf
|y Published on 2020-08-17. Available in OpenAccess from 2021-02-17.
856 4 _ |u https://juser.fz-juelich.de/record/889312/files/s41567-020-0998-2.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:889312
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)165229
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-05
915 _ _ |a IF >= 20
|0 StatID:(DE-HGF)9920
|2 StatID
|b NAT PHYS : 2018
|d 2020-09-05
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT PHYS : 2018
|d 2020-09-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-05
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-05
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-05
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-09-05
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-05
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21