| Hauptseite > Publikationsdatenbank > Germination Detection of Seedlings in Soil: A System, Dataset and Challenge > print |
| 001 | 889315 | ||
| 005 | 20250804115234.0 | ||
| 024 | 7 | _ | |a 10.1007/978-3-030-65414-6_25 |2 doi |
| 024 | 7 | _ | |a 2128/26867 |2 Handle |
| 024 | 7 | _ | |a WOS:001500596600025 |2 WOS |
| 037 | _ | _ | |a FZJ-2021-00207 |
| 041 | _ | _ | |a English |
| 100 | 1 | _ | |a Scharr, Hanno |0 P:(DE-Juel1)129394 |b 0 |e Corresponding author |u fzj |
| 111 | 2 | _ | |a 16th European Conference on Computer Vision |g ECCV 2020 |c Glasgow, UK |d 2020-08-23 - 2020-08-28 |w UK |
| 245 | _ | _ | |a Germination Detection of Seedlings in Soil: A System, Dataset and Challenge |
| 260 | _ | _ | |a Cambridge |c 2020 |b Springer |
| 295 | 1 | 0 | |a Computer Vision – ECCV 2020 Workshops |
| 300 | _ | _ | |a 360 - 374 |
| 336 | 7 | _ | |a CONFERENCE_PAPER |2 ORCID |
| 336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
| 336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
| 336 | 7 | _ | |a conferenceObject |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Conference Paper |2 DataCite |
| 336 | 7 | _ | |a Contribution to a conference proceedings |b contrib |m contrib |0 PUB:(DE-HGF)8 |s 1611230913_3575 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a Contribution to a book |0 PUB:(DE-HGF)7 |2 PUB:(DE-HGF) |m contb |
| 490 | 0 | _ | |a Lecture Notes in Computer Science |v 12540 |
| 520 | _ | _ | |a In phenotyping experiments plants are often germinated in high numbers, and in a manual transplantation step selected and moved to single pots. Selection is based on visually derived germination date, visual size, or health inspection. Such values are often inaccurate, as evaluating thousands of tiny seedlings is tiring. We address these issues by quantifying germination detection with an automated, imaging-based device, and by a visual support system for inspection and transplantation. While this is a great help and reduces the need for visual inspection, accuracy of seedling detection is not yet sufficient to allow skipping the inspection step. We therefore present a new dataset and challenge containing 19.5k images taken by our germination detection system and manually verified labels. We describe in detail the involved automated system and handling setup. As baseline we report the performances of the currently applied color-segmentation based algorithm and of five transfer-learned deep neural networks. |
| 536 | _ | _ | |a 583 - Innovative Synergisms (POF3-583) |0 G:(DE-HGF)POF3-583 |c POF3-583 |f POF III |x 0 |
| 536 | _ | _ | |a 582 - Plant Science (POF3-582) |0 G:(DE-HGF)POF3-582 |c POF3-582 |f POF III |x 1 |
| 700 | 1 | _ | |a Bruns, Benjamin |0 P:(DE-Juel1)128666 |b 1 |u fzj |
| 700 | 1 | _ | |a Fischbach, Andreas |0 P:(DE-Juel1)129315 |b 2 |u fzj |
| 700 | 1 | _ | |a Roussel, Johanna |0 P:(DE-Juel1)129392 |b 3 |
| 700 | 1 | _ | |a Scholtes, Lukas |0 P:(DE-Juel1)173690 |b 4 |u fzj |
| 700 | 1 | _ | |a vom Stein, Jonas |0 P:(DE-Juel1)167520 |b 5 |u fzj |
| 773 | _ | _ | |a 10.1007/978-3-030-65414-6_25 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/889315/files/W20P26.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:889315 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)129394 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)128666 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)129315 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)173690 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)167520 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Key Technologies for the Bioeconomy |1 G:(DE-HGF)POF3-580 |0 G:(DE-HGF)POF3-583 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v Innovative Synergisms |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Key Technologies for the Bioeconomy |1 G:(DE-HGF)POF3-580 |0 G:(DE-HGF)POF3-582 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v Plant Science |x 1 |
| 914 | 1 | _ | |y 2020 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IBG-2-20101118 |k IBG-2 |l Pflanzenwissenschaften |x 0 |
| 980 | _ | _ | |a contrib |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a contb |
| 980 | _ | _ | |a I:(DE-Juel1)IBG-2-20101118 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|