001     889315
005     20250804115234.0
024 7 _ |a 10.1007/978-3-030-65414-6_25
|2 doi
024 7 _ |a 2128/26867
|2 Handle
024 7 _ |a WOS:001500596600025
|2 WOS
037 _ _ |a FZJ-2021-00207
041 _ _ |a English
100 1 _ |a Scharr, Hanno
|0 P:(DE-Juel1)129394
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 16th European Conference on Computer Vision
|g ECCV 2020
|c Glasgow, UK
|d 2020-08-23 - 2020-08-28
|w UK
245 _ _ |a Germination Detection of Seedlings in Soil: A System, Dataset and Challenge
260 _ _ |a Cambridge
|c 2020
|b Springer
295 1 0 |a Computer Vision – ECCV 2020 Workshops
300 _ _ |a 360 - 374
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1611230913_3575
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
490 0 _ |a Lecture Notes in Computer Science
|v 12540
520 _ _ |a In phenotyping experiments plants are often germinated in high numbers, and in a manual transplantation step selected and moved to single pots. Selection is based on visually derived germination date, visual size, or health inspection. Such values are often inaccurate, as evaluating thousands of tiny seedlings is tiring. We address these issues by quantifying germination detection with an automated, imaging-based device, and by a visual support system for inspection and transplantation. While this is a great help and reduces the need for visual inspection, accuracy of seedling detection is not yet sufficient to allow skipping the inspection step. We therefore present a new dataset and challenge containing 19.5k images taken by our germination detection system and manually verified labels. We describe in detail the involved automated system and handling setup. As baseline we report the performances of the currently applied color-segmentation based algorithm and of five transfer-learned deep neural networks.
536 _ _ |a 583 - Innovative Synergisms (POF3-583)
|0 G:(DE-HGF)POF3-583
|c POF3-583
|f POF III
|x 0
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 1
700 1 _ |a Bruns, Benjamin
|0 P:(DE-Juel1)128666
|b 1
|u fzj
700 1 _ |a Fischbach, Andreas
|0 P:(DE-Juel1)129315
|b 2
|u fzj
700 1 _ |a Roussel, Johanna
|0 P:(DE-Juel1)129392
|b 3
700 1 _ |a Scholtes, Lukas
|0 P:(DE-Juel1)173690
|b 4
|u fzj
700 1 _ |a vom Stein, Jonas
|0 P:(DE-Juel1)167520
|b 5
|u fzj
773 _ _ |a 10.1007/978-3-030-65414-6_25
856 4 _ |u https://juser.fz-juelich.de/record/889315/files/W20P26.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:889315
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129394
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)128666
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129315
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)173690
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)167520
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-583
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Innovative Synergisms
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Plant Science
|x 1
914 1 _ |y 2020
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21